Ab initio structural optimization at finite T based on anharmonic phonon theory

Ryotaro Arita

Department of Physics, Univ. Tokyo RIKEN Center for Emergent Matter Science

Collaborators

- Ryota Masuki (Univ. Tokyo)
- Takuya Nomoto (Tokyo Metro. Univ.)
- Terumasa Tadano (NIMS, Tsukuba)

Phys. Rev. B 106 224104 (2022) Phys. Rev. B 110 094102 (2024)

As the crystal structure changes, a wide variety of materials exhibit fascinating properties

- Ferroelectric phase transitions in perovskite oxides
- charge density wave in transition metal dichalcogenides
- enhancement of thermoelectric effect
- enhancement of superconductivity

o . . .

- Temperature dependence of crystal structure is one of the most fundamental problems in solid state physics
- Structural optimization based on DFT accurately calculates the crystal structure at T = 0
- Prediction of crystal structures at finite *T* is a significant challenge

- Finite *T* phases of strongly anharmonic crystals have unstable phonon modes: the harmonic approximation does not work
- Nuclear quantum effect also has a significant impact on the structures of materials with light atoms or those in the vicinity of the structural phase transition

S. P. Beckman et al., PRB 79, 144124 (2009)

- We formulate a theory of structural optimization at finite T based on the self-consistent phonon (SCP) theory.
- We apply the present method to the three-step structural phase transition of BaTiO₃ and polar metals LiBO₃ (B=Ta, W, Re, Os).

R. Masuki, T. Nomoto, RA, T. Tadano, Phys. Rev. B 106 224104 (2022) R. Masuki, T. Nomoto, RA, T. Tadano, Phys. Rev. B 110 094102 (2024) The Born-Oppenheimer potential energy surface can be Taylor-expanded in terms of the atomic displacement operator $\hat{u}_{R\alpha\mu}$ (α : atom index in the primitive cell, $\mu = x, y, z$)

$$\hat{U} = \sum_{n=0}^{\infty} \hat{U}_n$$
$$\hat{U}_n = \frac{1}{n!} \sum_{\{\boldsymbol{R} \alpha \mu\}} \Phi_{\mu_1 \cdots \mu_n} (\boldsymbol{R}_1 \alpha_1, \cdots, \boldsymbol{R}_n \alpha_n) \hat{u}_{\boldsymbol{R}_1 \alpha_1 \mu_1} \cdots \hat{u}_{\boldsymbol{R}_n \alpha_n \mu_n}$$

 $\Phi_{\mu_1\cdots\mu_n}(R_1\alpha_1,\cdots,R_n\alpha_n)$: interatomic force constants (IFCs)

Taylor expansion of the potential energy surface

In momentum space:

$$\hat{q}_{\boldsymbol{k}\lambda} = \frac{1}{\sqrt{N}} \sum_{\boldsymbol{R}\alpha\mu} e^{-i\boldsymbol{k}\cdot\boldsymbol{R}} \epsilon^*_{\boldsymbol{k}\lambda,\alpha\mu} \sqrt{M_{\alpha}} \hat{u}_{\boldsymbol{R}\alpha\mu},$$

$$\widetilde{\Phi}(\boldsymbol{k}_1\lambda_1,\cdots,\boldsymbol{k}_n\lambda_n) = \sum_{\{\alpha\mu\}} \frac{\epsilon_{\boldsymbol{k}_1\lambda_1,\alpha_1\mu_1}}{\sqrt{M_{\alpha_1}}} \cdots \frac{\epsilon_{\boldsymbol{k}_n\lambda_n,\alpha_n\mu_n}}{\sqrt{M_{\alpha_n}}}$$

$$\times \sum_{\boldsymbol{R}_1\cdots\boldsymbol{R}_{n-1}} \Phi_{\mu_1\cdots\mu_n}(\boldsymbol{R}_1\alpha_1,\cdots,\boldsymbol{R}_{n-1}\alpha_{n-1},0\alpha_n) e^{i(\boldsymbol{k}_1\cdot\boldsymbol{R}_1+\cdots+\boldsymbol{k}_{n-1}\cdot\boldsymbol{R}_{n-1})}.$$

$$\hat{U}_n = \frac{1}{n!} \frac{1}{N^{n/2-1}} \sum_{\{\boldsymbol{k}\lambda\}} \delta_{\boldsymbol{k}_1 + \dots + \boldsymbol{k}_n} \widetilde{\Phi}(\boldsymbol{k}_1 \lambda_1, \cdots, \boldsymbol{k}_n \lambda_n) \widehat{q}_{\boldsymbol{k}_1 \lambda_1} \cdots \widehat{q}_{\boldsymbol{k}_n \lambda_n}$$

Anharmonic terms $(n \ge 3)$ neglected in the harmonic approx.

Self-consistent Phonon Theory

Variational principle of the free energy:

$$\begin{aligned} \mathcal{F} &= -k_B T \log \operatorname{Tr} e^{-\beta \hat{\mathcal{H}}_0} + \langle \hat{H} - \hat{\mathcal{H}}_0 \rangle_{\hat{\mathcal{H}}_0} \geq F \\ \hat{\mathcal{H}}_0 &= \sum_{\boldsymbol{k}\lambda'} \hbar \Omega_{\boldsymbol{k}\lambda'} \hat{a}^{\dagger}_{\boldsymbol{k}\lambda'} \hat{a}_{\boldsymbol{k}\lambda'}. \end{aligned}$$

Minimizing \mathcal{F} in terms of $\Omega_{\boldsymbol{k}\lambda'}$ we get the SCP equation:

$$\Omega_{\boldsymbol{k}\lambda_{1}}^{2} = \omega_{\boldsymbol{k}\lambda_{1}}^{2} + \sum_{n=2}^{\infty} \frac{1}{(n-1)!N^{n-1}} \sum_{\{\boldsymbol{k}\lambda'\}} \left(\frac{\hbar}{2}\right)^{n-1}$$

$$\frac{\widetilde{\Phi}(\boldsymbol{k}\lambda_{1}, -\boldsymbol{k}\lambda_{1}, \boldsymbol{k}_{1}\lambda'_{1}, -\boldsymbol{k}_{1}\lambda'_{1}, \cdots, -\boldsymbol{k}_{n-1}\lambda'_{n-1})}{\Omega_{\boldsymbol{k}_{1}\lambda'_{1}} \cdots \Omega_{\boldsymbol{k}_{n-1}\lambda'_{n-1}}}$$

$$\times \left(n_{B}(\hbar\Omega_{\boldsymbol{k}_{1}\lambda'_{1}}) + \frac{1}{2}\right) \cdots \left(n_{B}(\hbar\Omega_{\boldsymbol{k}_{n-1}\lambda'_{n-1}}) + \frac{1}{2}$$

D. J. Hooton. Philosophical Magazine 3.25 (1958), T. Tadano, S. Tsuneyuki JPSJ 87 041015 (2018)

Self-consistent Phonon Theory

 $G^{-1} = G_0^{-1} - \Sigma[G]$

Anharmonicity+Thermal fluctuation =positive effective frequency

- Open-source software of anharmonic phonon calculation https://github.com/ttadano/alamode
- Perform phonon calculations based on IFCs extracted from DFT calculations
- Truncate the Taylor expansion at 4th order in SCP calculation
- Efficient SCP calculation by using reciprocal-space formulation

T. Tadano (NIMS)

ALAMODE

Generate displacement patterns

- ② Calculate atomic forces in each configuration
 - Use external DFT packages (VASP, Quantum Espresso, …)
- S Extract IFCs from the displacement-force data
 - Compressive sensing method [1,2]

 \rightarrow efficiently calculate IFCs from a small number of displacement-force data

[1] F. Zhou, et al. PRL 113, 185501 (2014) [2] T. Tadano, S. Tsuneyuki PRB 92, 054301 (2015)

Change of Crystal Structure

Structural optimization based on SCP theory

Minimizes the SCP free energy with respect to the atomic positions and the strain.

SCP calculation in updated structure → calculate IFCs in the updated structure
 Optimization of the SCP free energy → Gradient of the SCP free energy

IFC renormalization

- IFCs in the updated structure is necessary
- Calculation of IFCs from force-displacement data is numerically expensive

Update IFCs from the IFCs in the original structure

$$\begin{split} \hat{U} &= \sum_{n=0}^{\infty} \hat{U}_n^{(q^{(0)}=0)} \\ \hat{U}_n^{(q^{(0)}=0)} \\ &= \frac{1}{n!} \frac{1}{N^{n/2-1}} \sum_{\{\boldsymbol{k}\lambda\}} \delta_{\boldsymbol{k}_1 + \dots + \boldsymbol{k}_n} \widetilde{\Phi}^{(q^{(0)}=0)}(\boldsymbol{k}_1\lambda_1, \dots, \boldsymbol{k}_n\lambda_n) \\ &\times (\hat{q}_{\boldsymbol{k}_1\lambda_1} + \delta_{\boldsymbol{k}_1} \sqrt{N} q_{\lambda_1}^{(0)}) \cdots (\hat{q}_{\boldsymbol{k}_n\lambda_n} + \delta_{\boldsymbol{k}_n} \sqrt{N} q_{\lambda_n}^{(0)}) \end{split}$$

IFC renormalization

- IFCs in the updated structure is necessary
- Calculation of IFCs from force-displacement data is numerically expensive

Update IFCs from the IFCs in the original structure $\hat{U} = \sum_{n=0}^{\infty} \hat{U}_n^{(q^{(0)})}$ $\hat{U}^{(q^{(0)})}$ $=\frac{1}{n!}\frac{1}{N^{n/2-1}}\sum_{\{\boldsymbol{k}\lambda\}}\delta_{\boldsymbol{k}_1+\cdots+\boldsymbol{k}_n}\widetilde{\Phi}^{(q^{(0)})}(\boldsymbol{k}_1\lambda_1,\cdots,\boldsymbol{k}_n\lambda_n)$ $\times \hat{q}_{k_1\lambda_1}\cdots \hat{q}_{k_n\lambda_n}$

IFC renormalization

- IFCs in the updated structure is necessary
- Calculation of IFCs from force-displacement data is numerically expensive

Update IFCs from the IFCs in the original structure $\widetilde{\Phi}^{(q^{(0)})}(\mathbf{k}_{1}\lambda_{1},\cdots,\mathbf{k}_{n}\lambda_{n})$ $=\sum_{m}\frac{1}{m!}\sum_{\{\rho\}}\widetilde{\Phi}^{(q^{(0)}=0)}(\mathbf{k}_{1}\lambda_{1},\cdots,\mathbf{k}_{n}\lambda_{n},0\rho_{1},\cdots,0\rho_{m})$ $\times q^{(0)}_{\rho_{1}}\cdots q^{(0)}_{\rho_{m}}$

 $egin{array}{rcl} q^{(0)}_{lpha\mu}&=&\sqrt{M_{lpha}}u^{(0)}_{lpha\mu}\ q^{(0)}_{\lambda}&=&\sum_{lpha\mu}\epsilon_{0\lambda,lpha\mu}q^{(0)}_{lpha\mu} \end{array}$

IFC in the updated structure ← IFC in the original structure Similar formula can be derived for the structure change by strain • Gradient of the SCP free energy with respect to the atomic positions

$$=\sum_{n=0}^{\infty} \frac{1}{n!N^n} \sum_{\{\boldsymbol{k}\lambda\}}^{\infty} \left(\frac{\hbar}{2}\right)^n \frac{\widetilde{\Phi}(\boldsymbol{k}_1\lambda'_1, -\boldsymbol{k}_1\lambda'_1, \cdots, \boldsymbol{k}_n\lambda'_n, -\boldsymbol{k}_n\lambda'_n, 0\lambda)}{\Omega_{\boldsymbol{k}_1\lambda'_1} \cdots \Omega_{\boldsymbol{k}_n\lambda'_n}} \\ \times \left(n_B(\hbar\Omega_{\boldsymbol{k}_1\lambda'_1}) + \frac{1}{2}\right) \cdots \left(n_B(\hbar\Omega_{\boldsymbol{k}_n\lambda'_n}) + \frac{1}{2}\right)$$

Updating the structure

• The shift from the optimal atomic positions $\delta q_\lambda^{(0)}$ can be estimated by

$$rac{1}{N}rac{\partial \mathcal{F}}{\partial q_{\lambda}^{(0)}} = \sum_{\lambda_1} \Omega_{0\lambda\lambda_1} \delta q_{\lambda_1}^{(0)},$$

with the SCP dynamical matrix $\Omega_{0\lambda_1\lambda_2}$.

• The internal coordinate is updated as

$$q_{\lambda}^{(0)} \leftarrow q_{\lambda}^{(0)} - eta_{\mathsf{mix},\mathsf{ion}} \delta q_{\lambda}^{(0)}.$$

 $\beta_{\rm mix,ion}$ is introduced to make the calculation scheme more robust and is usually chosen to be $0 < \beta_{\rm mix,ion} < 1$.

• We can formulate a similar procedure for strain.

- No additional DFT calculation in the structural optimization loop → efficient!
- Both the atomic positions and the shape of the unit cell are optimized.
- We have implemented the calculation scheme to the ALAMODE package

3-step structural phase transition in BaTiO₃

H. F. Kay, P. Vausden (1949)

- $2 \times 2 \times 2$ supercell containing 40 atoms.
- Used VASP implementation of the PBEsol exchange-correlation functional and PAW pseudopotentials.
- Basis cutoff is 600 eV. $4 \times 4 \times 4$ Monkhorst-Pack kmesh.
- Extracted IFCs from displace-force data of 300 configurations, which we take from AIMD snapshots with little correlation and added random displacements. The AIMD calculation were run with basis cutoff 400 eV, 2×2×2 Monkhorst-Pack kmesh, because it is just for sampling the potential energy surface and calculation with high accuracy is unnecessary.

Cubic-tetragonal structural transition

solid line: cooling, dashed line: heating Hysterisis \rightarrow first-order phase transition

3-step structural transition

Free energy 0.050.00 $\mathcal{F}_{1,cubic}$ [meV] -0.05cubic tetra -0.10ortho rhombo -0.15ĥ -0.20 rhombo ortho tetra cubic -0.25400 500 550 450600 650 Temperature [K] ----

T_c [K]	calculation	experiment [1]
cubic-tetra	606	~ 390
tetra-ortho	509	~ 270
tetra-rhombo	411	$\sim \! 180$

Lattice constant

Spontaneous polarization

Pressure-Temperature phase diagram

(a) Calculation (b) Experiment

The possible sources of the error of the transition temperatures are

- the error of the functional used in the DFT calculation (PBEsol): Lower T_c for smaller lattice constant
- the truncation of the Taylor expansion of the potential energy surface at the fourth order
- the approximation of the SCP theory

- We have developed an efficient calculation scheme of structural optimization at finite temperature based on SCP theory.
- We applied the method to BaTiO₃. The three-step structural phase transition of BaTiO₃ have been successfully reproduced.
- Our method can efficiently calculate the crystal structures of general materials at finite temperatures.