Intertwined Orders and the Physics of High Temperature Superconductors

Eduardo Fradkin

- Department of Physics and Anthony J. Leggett Institute for Condensed Matter Theory University of Illinois, Urbana Illinois, USA
- Lecture at the 22nd International Conference on Recent Progress Progress in Many-Body Theories Eugene Feenberg Memorial Medal in Many-Body Physics September 26, 2024, Tsukuba, Japan

Physics

The Anthony J Leggett Institute for Condensed Matter Theory

Collaborators

Rodrigo Soto Garrido Vidya Madhavan Séamus Davis Peter Abbamonte Yuxuan Wang

Steven Kivelson Erez Berg John Tranquada Dale Van Harlingen

Outline

- The Problem of High Temperature Superconductors
- The Competing Orders Scenario
- Intertwined Orders
- Electronic Liquid Crystal Phases and Frustrated Phase Separation
- The Role of Quasi-two-dimensionality
- Pair-Density-Wave Order: an Intertwined Order
- **Outlook**

Why is High Temperature Superconductivity different

- Most high T_c superconductors are quasi-two dimensional materials
- The "normal" phase is not a good metal: the electronic quasiparticles are not well defined, $R\alpha T$, etc.
- The dominant interactions are strong and repulsive
- The SC state arises from doping a strongly correlated Mott insulator
- Several other ordered (or almost ordered) states are also exist

• Break translation and rotational invariance to varying degrees • Smectic (stripe): breaks translational symmetry in one direction • Nematic: uniform and anisotropic metallic or SC phase; breaks

-
-
- the point group symmetry
- How are they related to SC?

Electronic Nematic Fluids

- Uniform phase of a fluid that breaks spontaneously rotational invariance
- Order parameter: traceless symmetric tensor (in 2D this is equivalent to a director)
- In an electronic system a nematic state is a phase with a large, sharp temperature-dependent transport anisotropy (2DEG near $v=9/2$; Sr₃Ru₂O₇ for H~7-8T; YBCO in the pseudogap regime; BaFe₂As₂,FeSe)
- Two pathways to an electronic nematic state: a) by melting a charge stripe phase, and b) by a Pomeranchuk instability of a Fermi liquid: particle-hole condensate in the quadrupolar, ℓ =2, channel)

Kivelson, Fradkin, Emery, 1998; Fradkin and Kivelson 1998; Oganesyan, Kivelson and Fradkin (2001)

$$
\mathcal{Q}(\boldsymbol{x}) = \frac{1}{k_F^2} \begin{pmatrix} \psi^\dagger(\boldsymbol{x}) (\partial_x^2 - \partial_y^2) \psi(\boldsymbol{x}) & \psi^\dagger(\boldsymbol{x}) 2 \partial_x \partial_y \psi(\boldsymbol{x}) \\ \psi^\dagger(\boldsymbol{x}) 2 \partial_x \partial_y \psi(\boldsymbol{x}) & \psi^\dagger(\boldsymbol{x}) (\partial_y^2 - \partial_x^2) \psi(\boldsymbol{x}) \end{pmatrix}
$$

The YBCO Phase Diagram

It applies generally to all the cuprates, LBCO, YBCO, LSCO… Fe SCs, Kagome SCs, UTe₂

- T_c vs x has a plateau with an anomaly at "1/8" (Bonn & Hardy)
- INS finds nematic order for y~6.45 with T_{cN} ~150 K
- NMR measurements at high fields finds a charge stripe signature in agreement with quantum oscillations (dHvA) with a T_{cdw} ~60 K
- **Transport and Peltier experiments find** nematic order in the pseudogap regime, with T_v ~150 K
- RIXS, X ray diffraction, and ultrasound anomalies find static stripe charge order near $x=1/8$ with a T_{cdw} 150 K

y"

The Competing Orders Scenario

- Landau Theory of Phase Transitions with several order parameters: one order is strongest and the others are suppressed
- T_c's for the different phases are quite different
- Regimes in which orders have similar T_c 's are exceptional and require fine tuning (multicritical point)
- Why are the T_c s of different orders are comparable without fine tuning?

Why are the orders of comparable strength?

• This fact suggests that all the observed orders may have a common physical origin and are **intertwined**

• Strong hint: electronic inhomogeneity. STM sees stripe and nematic local order in exquisite detail in BSCCO on a broad range of temperatures, voltage and field

• Electronic liquid crystal phases have also been seen

- This is difficult to understand in terms of the competing order scenario
-
-
- This phenomenology is natural in doped Mott insulators: frustrated phase separation
- many unconventional superconductors

PDW SC in La_{2-x}Ba_xCuO₄ @ x~1/8

- LBCO: low energy stripe fluctuations
- Very low T_c @ $x=1/8$ with static stripe order
- SC layer decoupling at x=1/8 (Li et al, 2007)
- Also seen in underdoped LSCO in magnetic fields where INS saw a field induced SDW (Basov 2010)
- Can only happen if a special symmetry of the SC in the striped state frustrates the c-axis Josephson coupling.
- We conjectured a novel striped superconducting state, a Pair Density Wave, in which CDW, SDW, and d-wave SC orders are intertwined! (Berg et al, 2007, 2008)

Prototype of Intertwined Orders: the PDW State

- Intertwined striped charge, spin and superconducting orders.
- Found in variational Monte Carlo (Himeda *et al* 2004), MFT (Poilblanc *et al* 2007), and iPEPS (Corboz *et al*, PRL 2014)
- Has not yet been found in DMRG on 4 leg Hubbard and t-J ladders

Berg, EF, Kim, Kivelson, Oganesyan, Tranquada, Zhang, PRL 2007

- PDW locally is a d-wave SC
- π phase shift

Order Parameters of the PDW

- **Local pairing amplitude:** $\Delta(\mathbf{r}) = \Delta_0(\mathbf{r}) + \Delta_{\mathbf{Q}}(\mathbf{r})$ ei Q.r+ $\Delta_{\mathbf{Q}}(\mathbf{r})$ e^{-iQ.r}
- Unidirectional PDW: $\Delta_0=0$, $|\Delta_{\mathbf{Q}}|=|\Delta_{\mathbf{Q}}|$ (LO SC without a B field)
- Complex charge 2e singlet pair condensate with wave vector **Q**
- Two complex SC order parameters: $\Delta_{\mathbf{Q}}(\mathbf{r})$ and $\Delta_{-\mathbf{Q}}(\mathbf{r})$
- Two amplitude (Higgs) modes and two phase fields
- Charge stripe: ρ**K**, unidirectional charge stripe with wavevector **K**
- Spin stripe order parameter: S_Q, charge neutral complex spin vector order parameter
- PDW has a "Fermi surface" of charge-neutral Bogoliubov qp's

Ginzburg-Landau Theory (Berg, EF, Kivelson, Tranquada, 2009)

- •The quadratic and quartic terms are standard
- •Interesting cubic terms allowed if **K**=2**Q** ("2Q" CDW) $F_3 = \gamma_{\Delta} \rho_{\mathbf{K}}^* \Delta_{-\mathbf{Q}}^* \Delta_{\mathbf{Q}} + \text{c.c.}$
- However, in the Landau theory orders do not have comparable point with **very large** symmetry!
- Composite order parameters

strength **unless** all the parameters are fine-tuned to a multicritical

If PDW and uniform SC coexist: a "1Q" CDW order must appear

$$
\rho_{\mathbf{K}} \sim \Delta_{-\mathbf{Q}}^* \Delta_{\mathbf{Q}} \qquad \Delta_{4e} \sim \Delta_{-\mathbf{Q}} \Delta_{\mathbf{Q}} \qquad \rho_{\mathbf{Q}} \sim \Delta_0^* \Delta_{\mathbf{Q}}
$$

Topological Excitations of the PDW SC E. Berg. E. Fradkin and S. A. Kivelson (2009)

*• S*trongly layered system: 2D thermal *phase fluctuations* play a key

• Two phase fields: the SC phase $\theta_{+} = (\theta_{Q} + \theta_{-Q})/2$ and the CDW

- role
- *•* Unidirectional PDW SC
- phase $\phi = \theta_o \theta_o$
- $H = (\rho_s (\nabla \theta_+)^2 + \kappa (\nabla \phi)^2)/2$
- **•** SC vortex with $\Delta\theta_+ = 2\pi$ and $\Delta\phi = 0$
- *•* Bound state of a 1/2 vortex and a CDW dislocation

 $Δθ_+ = π, Δφ = 2π$

• Double CDW dislocation, $\Delta\theta_+ = 0$, $\Delta\phi = 4\pi$

Half-vortex and a Dislocation Double Dislocation

Topological Excitations of the PDW

Thermal melting of the PDW state

- Three types of topological excitations: SC vortex), double dislocation, 1/2 vortex-single dislocation
- Three pathways for thermal melting
- KT phase transitions by proliferation of topological defects
- Phases: PDW, Charge 4e SC, CDW, and normal (Ising nematic)

Comparable T_c's without fine tuning!

STM spectra in the vortex halos of BSCCO (Edkins et al, 2018)

Measurement of the CPR relation and detection of D-wave and PDW SC Order in Low T LBCO @ x=1/8 D. Hamilton, G. Gu, E. F., D. Van Harlingen, 2018

- the Meisner state of LBCO
- d-wave SC
- ω 1/8 the sin2 ϕ component grows as T↑
- the sin ϕ decreases as T \downarrow
- uniform d-wave SC and PDW coexist below Tc~4K

 20 10 $I(\phi)$ (nA) -10 -20

• PDW states are found in BCS approaches only if the interactions are larger than the bandwidth of the lattice model where it should not

• iPEPS simulations in the 2D t-J model find three phases (uniform d-wave SC, SC coexisting with a stripe/CDW phase and a PDW) with energies

• Nevertheless there is evidence for PDW phases in some models

• Determinantal QMC sees short range stripe order in the 2D Hubbard

What is the status of microscopic theory?

- interaction regime
- BCS type approaches only work at weak coupling
	- work
- model at relatively high temperatures (sign problem)
- models on cylinders of up to 6 legs
- that differ only in the 4th decimal place
-

• Intertwined ordres require theories in the medium to strong

• DMRG sees stripe phases and superconductivity in Hubbard and t-J

The Kondo-Heisenberg chain and the in 2-leg extended Hubbard model

Heisenberg Chain J_H

E. Berg, E. Fradkin, and S. Kivelson, PRL 2010; Jaefari & EF, PRB 2012 1DEG

$$
H_{\rm KH} = -t \sum_{j} \left(c_{j\sigma}^{\dagger} c_{j+1,\sigma} + \text{h.c.} \right) + J_H \sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1} + J_K \sum_{j} \mathbf{S}_{j} \cdot \mathbf{s}(x_{j})
$$

where
$$
\mathbf{s}(x_{j}) = \frac{1}{2} \sum_{j} c_{j,\alpha}^{\dagger} \sigma_{\alpha\beta} c_{j\beta}
$$

 J_K is the Kondo coupling and J_H is the Heisenberg coupling

- DMRG finds a commensurate PDW in a broad phase when $J_H > J_K$
	- Bosonization yields the same result

$$
2\sum_{\alpha,\beta=\uparrow,\downarrow} \zeta_{j,\alpha} \circ \alpha \beta \zeta_{j,\beta}
$$

Expectation Values of the Order Parameters as a function of distance from the left edge

PDW phases from a triplet Pomeranchuk instability C. Wu, K. Sun, EF, and S.C. Zhang (2007)

Nematic states in the triplet channel with orbital angular momentum $l=2$

Superconducting Phases in the Nematic Triplet **Channel** Soto-Garrido and EF, PRB 2014

 $Q=\delta$

Pair Field susceptibility in the s-wave and d-wave channels

 n/Δ_{00}

Conclusions

- Intertwined orders in HTSC!
- The orders melt in different sequences, they appear essentially with similar strength
- In quasi 2D systems it is natural to get complex phase diagrams with comparable critical temperatures!
- The PDW is a new state that can explain many intriguing features of HTSC
- Big question: how generic is the PDW?
- Encouraging results in some models
- Theoretical Challenge: construct a microscopic theory of Intertwined Orders (and PDW states)!