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Why is High Temperature Superconductivity different

• Most high Tc superconductors are quasi-two dimensional materials

• The  “normal” phase is not a good metal: the electronic 
quasiparticles are not well defined, 𝑅∝𝑇, etc.

• The dominant interactions are strong and repulsive

• The SC state arises from doping a strongly correlated Mott 
insulator

• Several other ordered (or almost ordered) states are also exist 
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Electronic Liquid Crystal Phases of Doped Mott Insulators

S. A. Kivelson, E. Fradkin and V. J. Emery (1998)

• Break translation and rotational invariance to varying degrees
• Smectic (stripe): breaks translational symmetry in one direction
• Nematic: uniform and anisotropic metallic or SC phase; breaks 

the point group symmetry
• How are they related to SC?



Electronic Nematic Fluids
Kivelson, Fradkin, Emery, 1998; Fradkin and Kivelson 1998; Oganesyan, Kivelson and Fradkin (2001)

• Uniform phase of a fluid that breaks spontaneously rotational invariance 

• Order parameter: traceless symmetric tensor (in 2D this is equivalent to a director)

• In an electronic system a nematic state is a phase with a large, sharp temperature-dependent 
transport anisotropy (2DEG near 𝜈=9/2; Sr3Ru2O7 for H~7-8T; YBCO in the pseudogap regime; 
BaFe2As2,FeSe)

• Two pathways to an electronic nematic state: a) by melting a charge stripe phase, and b) by a 
Pomeranchuk instability of a Fermi liquid: particle-hole condensate in the quadrupolar, 𝓁=2, channel)
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The YBCO Phase Diagram

• Tc vs x has a plateau with an anomaly at “1/8” 
(Bonn & Hardy)

• INS finds nematic order for y~6.45 with 
TcN~150 K

• NMR measurements  at high fields finds a 
charge stripe signature in agreement with 
quantum oscillations (dHvA) with a Tcdw~60 K

• Transport and Peltier experiments find 
nematic order in the pseudogap regime, with 
Tν~150 K 

• RIXS, X ray diffraction, and ultrasound 
anomalies  find static stripe charge order near 
x=1/8 with a Tcdw~150 K
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The Competing Orders Scenario

• Landau Theory of Phase Transitions with several order 
parameters:  one order is strongest and the others are 
suppressed

• Tc’s for the different phases are quite different

• Regimes in which orders have similar 𝑇c’s are 
exceptional and require fine tuning (multicritical 
point)

• Why are the 𝑇cs of different orders are comparable 
without fine tuning?
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Why are the orders of comparable strength?

• This is difficult to understand in terms of the 
competing order scenario

• This fact suggests that all the observed orders may 
have a common physical origin and are intertwined

• Strong hint: electronic inhomogeneity. STM sees stripe 
and nematic local order in exquisite detail in BSCCO 
on a broad range of temperatures, voltage and field

• This phenomenology is natural in doped Mott 
insulators: frustrated phase separation

• Electronic liquid crystal phases have also been seen 
many unconventional superconductors
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PDW SC in La2-xBaxCuO4 @ x~1/8

• LBCO: low energy stripe fluctuations 

• Very low Tc @ x=1/8 with static stripe order

• SC layer decoupling at x=1/8 (Li et al, 2007)

• Also seen in underdoped LSCO in magnetic fields 
where INS saw a field induced SDW (Basov 2010)

• Can only happen if a special symmetry of the SC in the 
striped state frustrates the c-axis Josephson coupling.

• We conjectured a novel striped superconducting state, 
a Pair Density Wave, in which CDW, SDW, and d-wave 
SC orders are intertwined! (Berg et al, 2007, 2008)
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Prototype of Intertwined Orders: the PDW State

• PDW locally is a d-wave SC

• 𝜋 phase shift

• Intertwined striped charge, spin 
and superconducting orders.

• Found in variational Monte Carlo 
(Himeda et al 2004), MFT 
(Poilblanc et al 2007), and iPEPS 
(Corboz et al, PRL 2014)

• Has not yet been found in DMRG 
on 4 leg Hubbard and t-J ladders
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x

Berg, EF,  Kim, Kivelson,  
Oganesyan, Tranquada, Zhang, 

PRL 2007

11



Order Parameters of the PDW 

• Local pairing amplitude: Δ(r)=Δ0(r)+ ΔQ(r) ei Q.r+ Δ-Q(r) e-iQ.r 

• Unidirectional PDW: Δ0=0, |ΔQ|=|Δ-Q| (LO SC without a B field)

• Complex charge 2e singlet pair condensate with wave vector Q

• Two complex SC order parameters: ΔQ(r) and Δ-Q(r)

• Two amplitude (Higgs) modes and two phase fields

• Charge stripe:  ρK, unidirectional charge stripe with wavevector K

• Spin stripe order parameter:  SQ, charge neutral complex spin vector 
order parameter

• PDW has a “Fermi surface” of charge-neutral Bogoliubov qp’s
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Ginzburg-Landau Theory 
(Berg, EF, Kivelson, Tranquada, 2009) 

•The quadratic and quartic terms are standard

•Interesting cubic terms allowed if K=2Q (“2Q” CDW)
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• However, in the Landau theory orders do not have comparable 

strength unless all the parameters are fine-tuned to a multicritical 

point with very large symmetry!

• Composite order parameters

F3 = ��⇢⇤K�⇤
�Q�Q + c.c.
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0�Q

If PDW and uniform SC coexist: a “𝟣Q”  CDW order must appear



Topological Excitations of the PDW SC
E. Berg. E. Fradkin and S. A. Kivelson (2009)

• Strongly layered system: 2D thermal phase fluctuations play a key 
role

• Unidirectional PDW SC

• Two phase fields: the SC phase θ+=(θ𝑸+θ-𝑸)/2 and the CDW 

phase ϕ=θ𝑸-θ-𝑸

• H=(𝜌s (∇𝜃+)2 + κ (∇ϕ)2)/2

• SC vortex with  Δθ+ = 2π and Δϕ=0

• Bound state of a 1/2 vortex and a CDW dislocation

Δθ+ = π, Δϕ= 2π

• Double CDW dislocation, Δθ+ = 0, Δϕ= 4π
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Half-vortex and a Dislocation 
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Thermal melting of the PDW state

• Three types of topological 
excitations: SC vortex), 
double dislocation, 1/2 
vortex-single dislocation

• Three pathways for thermal 
melting

• KT phase transitions by 
proliferation of topological 
defects

• Phases: PDW, Charge 4e SC, 
CDW, and normal (Ising 
nematic)
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STM spectra in the vortex halos of 
BSCCO (Edkins et al, 2018)



Measurement of the CPR relation and detection of D-wave 
and PDW SC Order in Low T LBCO @ x=1/8

D. Hamilton, G. Gu, E. F., D. Van Harlingen, 2018

• Current-Phase relation in 
the Meisner state of LBCO 

• d-wave SC

• @1/8 the sin2𝜙 component 

grows as T↑

• the sin𝜙 decreases as T↓

• uniform d-wave SC and 
PDW coexist below Tc~4K
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What is the status of microscopic theory?
• Intertwined ordres require theories in the medium to strong 

interaction regime

• BCS type approaches only work at weak coupling

• PDW states are found in BCS approaches only if the interactions are 
larger than the bandwidth of the lattice model where it should not 
work

• Determinantal QMC sees short range stripe order in the 2D Hubbard 
model at relatively high temperatures  (sign problem)

• DMRG sees stripe phases and superconductivity in Hubbard and t-J 
models on cylinders of up to 6 legs

• iPEPS simulations in the 2D t-J model find three phases (uniform d-wave 
SC, SC coexisting with a stripe/CDW phase and a PDW) with energies 
that differ only in the 4th decimal place

• Nevertheless  there is evidence for PDW phases in some models
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 The Kondo-Heisenberg chain and the in 2-leg 
extended Hubbard model

E. Berg, E. Fradkin, and S. Kivelson, PRL 2010; Jaefari & EF,  PRB 2012
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DMRG finds a commensurate PDW in a broad phase when JH>JK

Bosonization yields the same result



Expectation Values of the Order Parameters as a function of 
distance from the left edge
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PDW phases from a triplet Pomeranchuk instability
C. Wu, K. Sun, EF, and S.C. Zhang (2007)

∆!

Nematic states in the triplet channel with orbital angular momentum 𝑙=2
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“altermagnet” dynamical 𝑑-wave “Rashba”



Superconducting Phases in the Nematic Triplet 
Channel 

Soto-Garrido and EF, PRB 2014

Q=d
Q

cHQL

s-wave

d-wave

Pair Field susceptibility in the 
s-wave and d-wave channels
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Conclusions

• Intertwined orders in HTSC!

• The orders melt in different sequences, they appear essentially 
with similar strength

• In quasi 2D systems it is natural to get complex phase 
diagrams with comparable critical temperatures!

• The PDW is a new state that can explain many intriguing 
features of HTSC

• Big question: how generic is the PDW?

• Encouraging results in some models

• Theoretical Challenge: construct a microscopic theory of 
Intertwined Orders (and PDW states)!
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