Surrogate models for

Quantum many-body systems

Recent Progress in Many-Body Theories(RPMBT22)@Tsukuba, Sept. 23-27, 2024

Utsunomiya University

RIKEN Nishina Center

Sota Yoshida <u>syoshida@a.utsunomiya-u.ac.jp</u>

Condensed matter physics, Quantum Chemistry, Nuclear Physics, etc. share issues on...

- exponential growth of the size of Hilbert space

quantifying uncertainties/inverse problem (e.g. nuclear force)

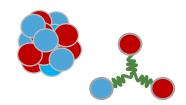
surrogate models, emulators, reduced order models, ...

you may call them in different ways

Difference between nuclei and other systems

Quantum chemistry:

Nuclear physics:



"99 > % of energy of a molecule in equilibrium Interaction is highly non-perturbative & uncertain

many channels, **three-nucleon force**,...

(i.e., single Slater determinant)

rest 1 % is called **correlation energy**

is explained within Hartree-Fock level"

<u>M</u>øller – <u>P</u>lesset (MP a.k.a MBPT)

 \underline{C} oupled \underline{C} luster \underline{S} ingle and \underline{D} ouble (CCSD)

 $CCSD + \underline{T}riple (CCSDT)$

Full Configuration interaction (Full-CI)

⁵⁶Ni under modern Nuclear Force (Chiral EFT)

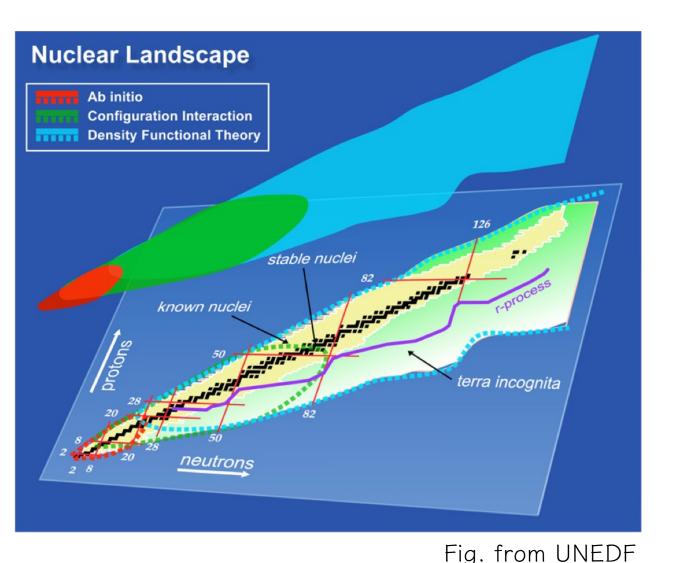
HF = - 302.716 MeV

HF + MP2 + MP3 = -473.089 MeV (MP2 = -152.533, MP3 = -17.716)

How dare people say perturbation theory !!

c.f. Energy (Exp.) = -483.996 MeV

Nuclear landscape

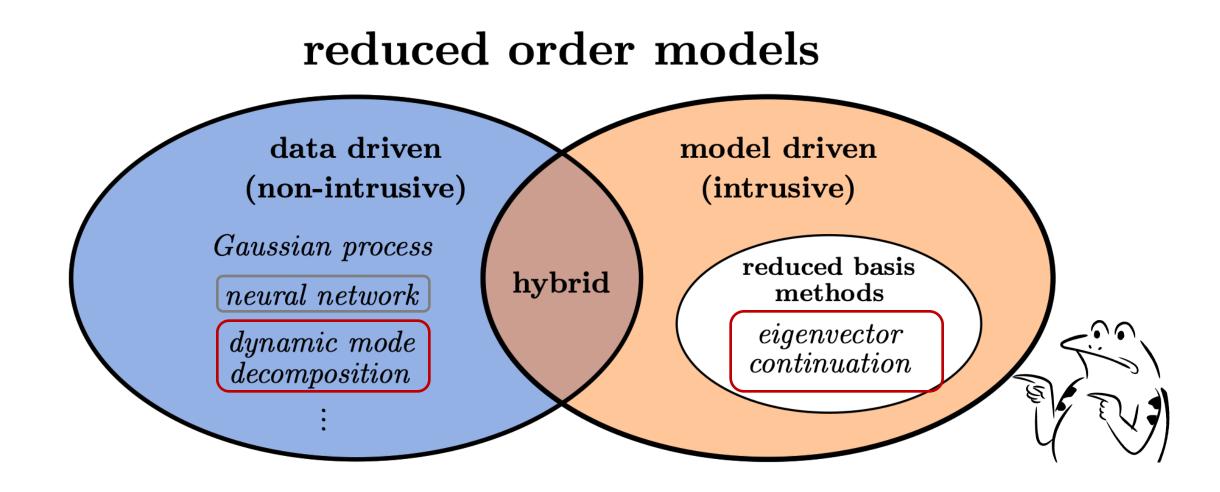


"Terra incognita" in nuclear physics

- unstable nuclei (e.g. r-process path)
- superheavy nuclei
- etc.

The scope of Ab initio and Cl is gradually expanding, but still limited

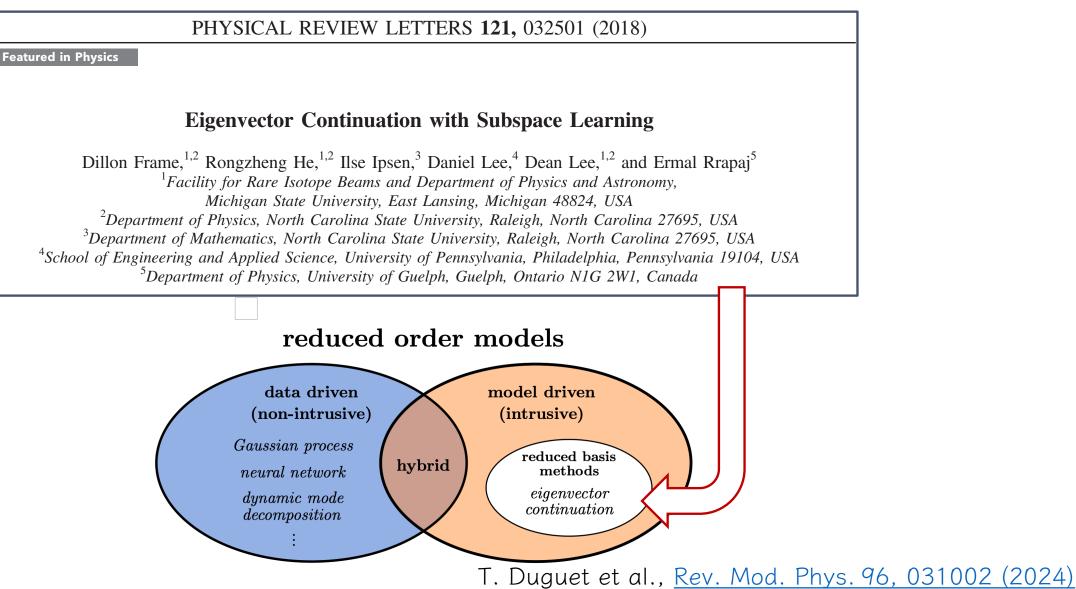
The connection between EDF and nuclear force is unclear



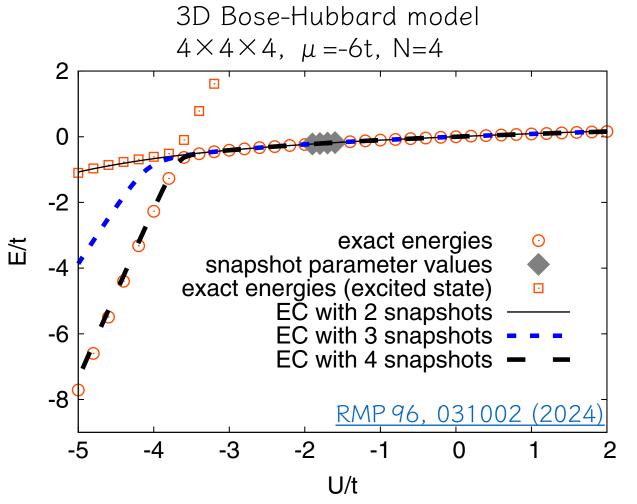
T. Duguet et al., <u>Rev. Mod. Phys. 96, 031002 (2024)</u>

Pioneering work in nuclear physics community

In 2018, a seminal paper is published: Eigenvector Continuation (EC)



Eigenvector continuation (EC) in a nutshell



- 1. Suppose you have exact eigenstates at some points (taking **snapshots**)
- 2. Span the wavefunction by the samples and solve generalized eigen val. prob.

$$\begin{split} \tilde{H}\vec{v} &= \lambda N\vec{v}, \\ \tilde{H}_{i,j} &= \langle \psi(\vec{c}_i) | H(\vec{c}_{\odot}) | \psi(\vec{c}_j) \rangle, \\ N_{i,j} &= \langle \psi(\vec{c}_i) | \psi(\vec{c}_j) \rangle. \end{split}$$

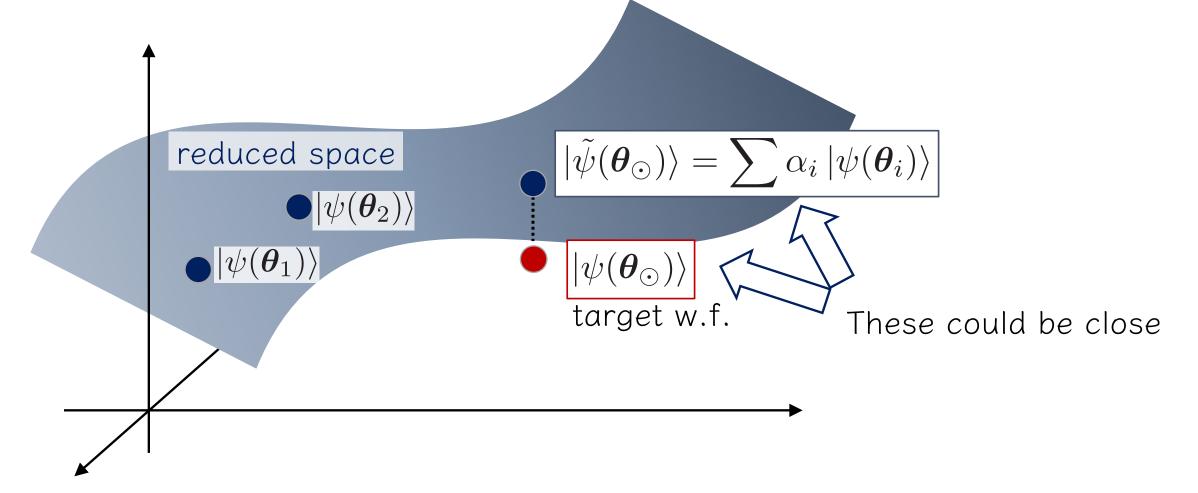
$$E(\vec{c}_{\odot}) \simeq \lambda, \quad |\psi(\vec{c}_{\odot})\rangle \simeq \sum_{i=1}^{N_s} v_i |\psi(\vec{c}_i)\rangle \equiv |\psi_{EC}(\vec{c}_{\odot})\rangle.$$

↑ several snapshots are enough to express eigenstates elsewhere

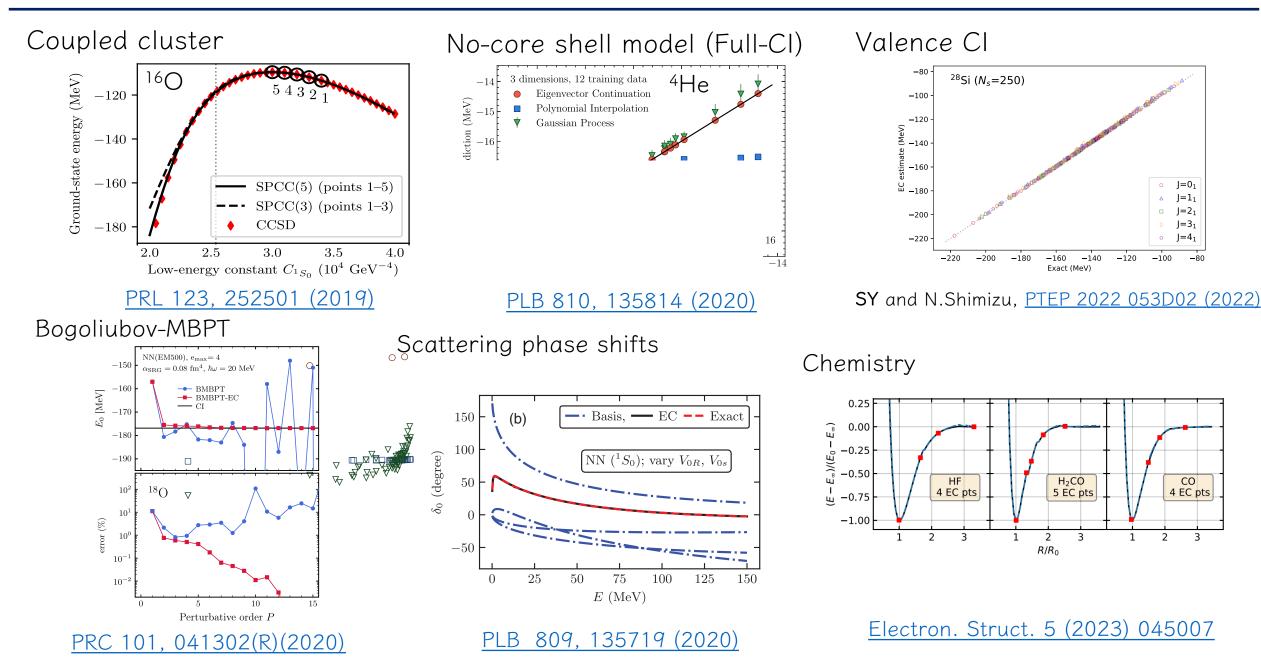
That have been proven in other quantum many-body systems

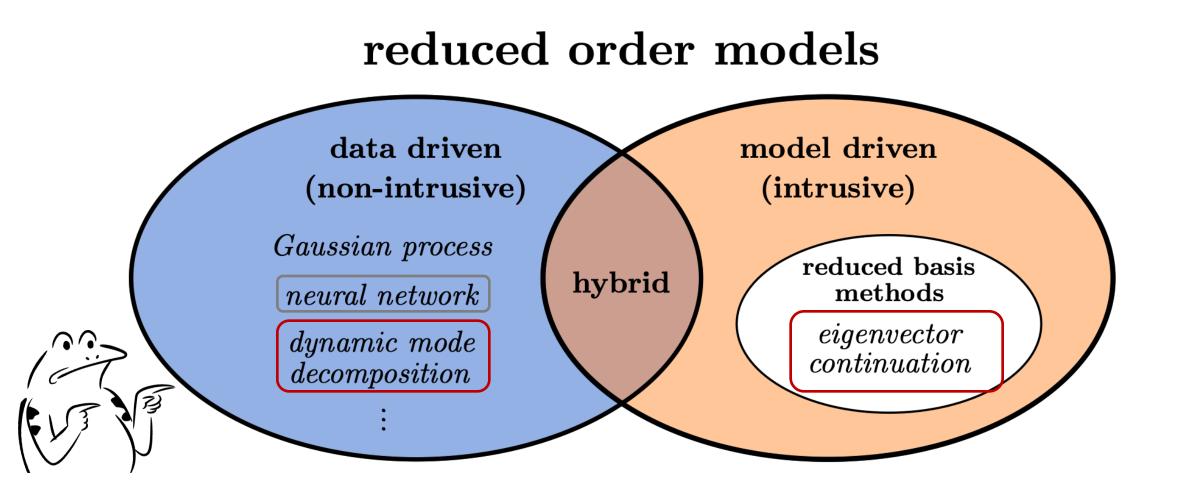
Wavefunctions/eigen states are obviously **not arbitrary** in the Hilbert space

Your snapshots and target eigenstates may live on a certain subspace



Incomplete list of EC applications





T. Duguet et al., <u>Rev. Mod. Phys. 96, 031002 (2024)</u>

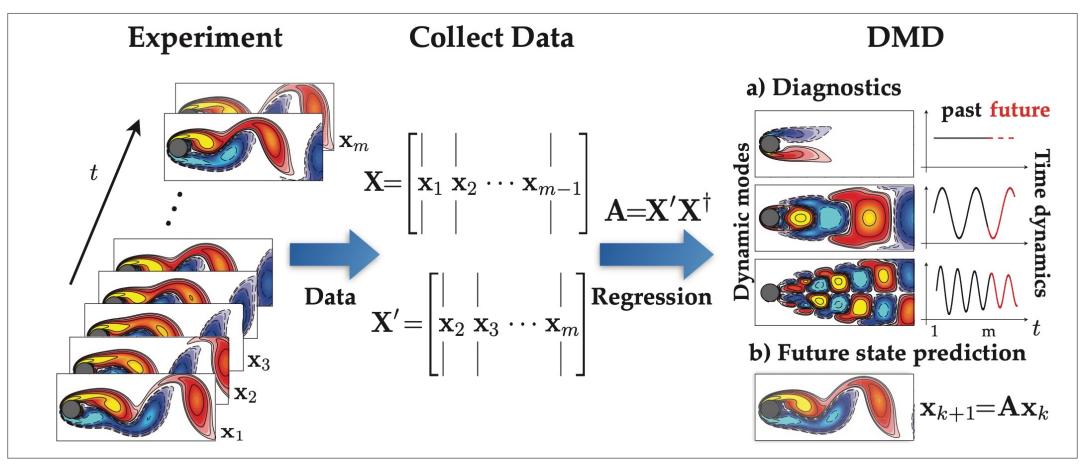


Fig 1.1 from Kutz et al., "<u>Dynamic Mode Decomposition</u>" SIAM

- various modes are decomposed into "dynamical modes"
- one can reconstruct original snapshots (and make predictions)

DMD algorithms

$$1. \qquad \begin{array}{ccc} \mathsf{D} \times \mathsf{N} & \mathsf{D} \times \mathsf{N} \\ \mathbf{X} \equiv \begin{pmatrix} | & & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_N \\ | & & | \end{pmatrix}, \mathbf{Y} \equiv \begin{pmatrix} | & & | \\ \mathbf{x}_2 & \cdots & \mathbf{x}_{N+1} \\ | & & | \end{pmatrix} \right)$$

$$oldsymbol{Y} = oldsymbol{F}(oldsymbol{X}) igsqcap igstarrow oldsymbol{Y} pprox oldsymbol{A} oldsymbol{X}$$

D (dimension of many-body operator) > 10^7 approximating non-linear map F by linear map A N (# of snapshots) ~ $10 - 10^3$?

2. SVD of X
$$X = U\Sigma V^*$$
 $ightarrow$ truncated SVD $X pprox U_r \Sigma_r V_r^\dagger$

3. Compute the matrix A using Moore-Penrose pseudo-inverse of X

$$\mathbf{A} pprox \mathbf{Y} \mathbf{X}^+ = Y \left(\mathbf{V}_r \mathbf{\Sigma}_r^{-1} \mathbf{U}_r^\dagger
ight)$$
 encoder

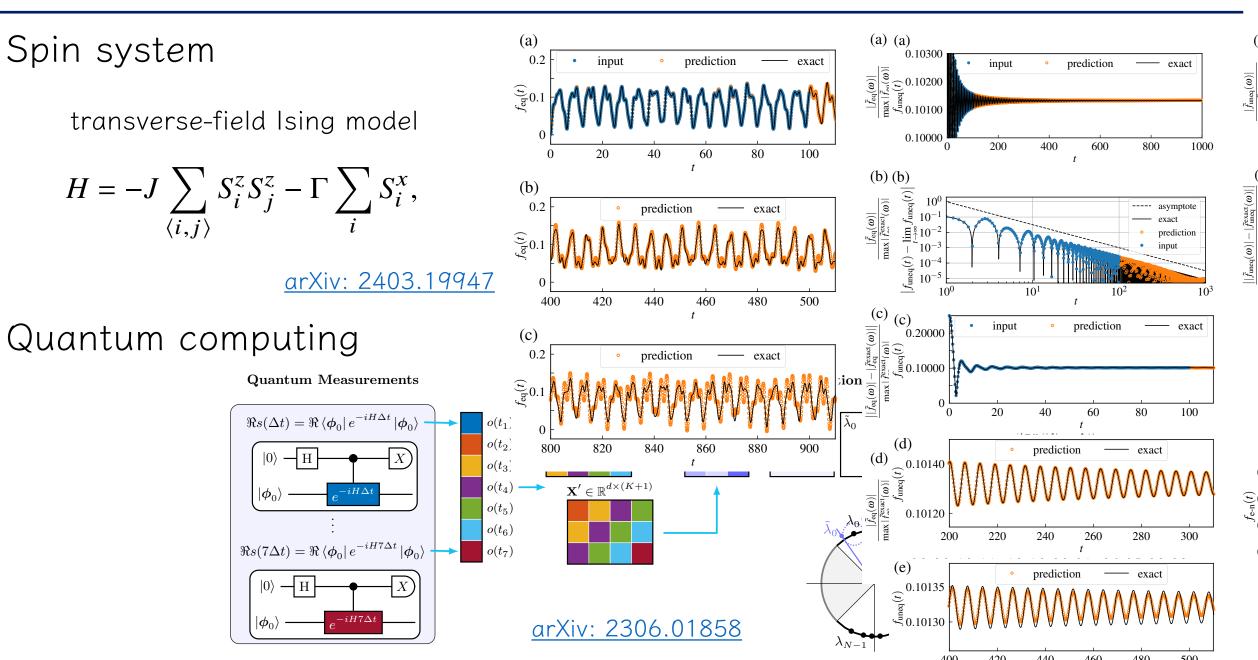
4. Obtain the <u>time evolution linear map in a latent space</u>

$$ilde{\mathbf{A}} = \mathbf{U}_{\mathbf{r}}^{\dagger}\mathbf{A}\mathbf{U}_{\mathbf{r}} pprox \mathbf{U}_{\mathbf{r}}^{\dagger}\mathbf{Y}\mathbf{V}_{\mathbf{r}}\mathbf{\Sigma}_{\mathbf{r}}^{-1}$$

 $\mathbf{A} = \mathbf{U_r} \mathbf{\tilde{A} U_r^{\dagger}}_{\text{decoder}}$

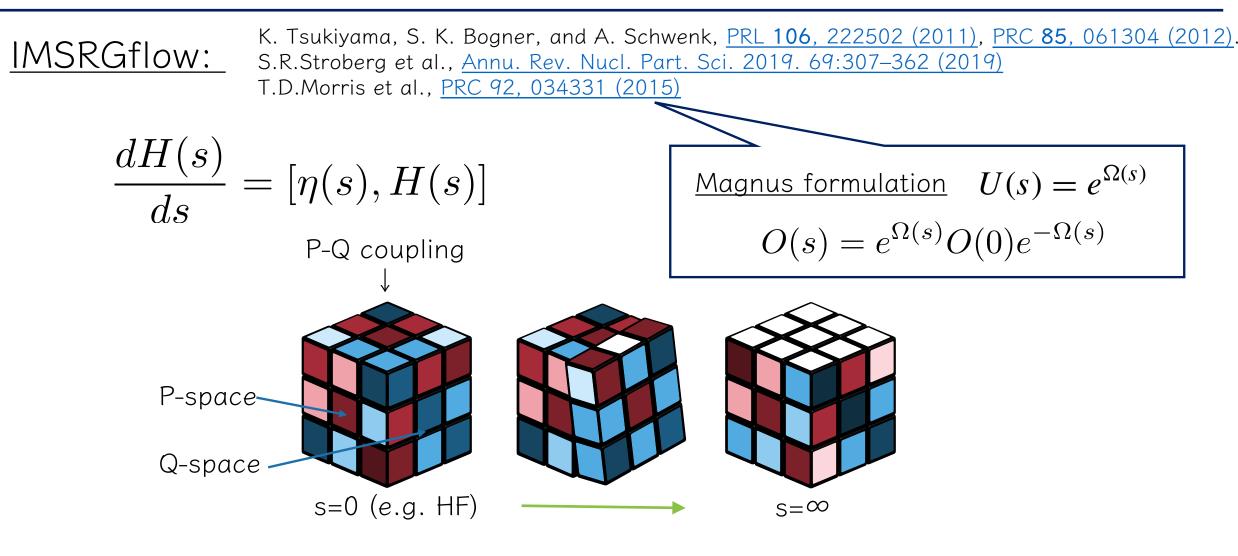
k-time step forward can be done in the latent space

applications to quantum many-body systems



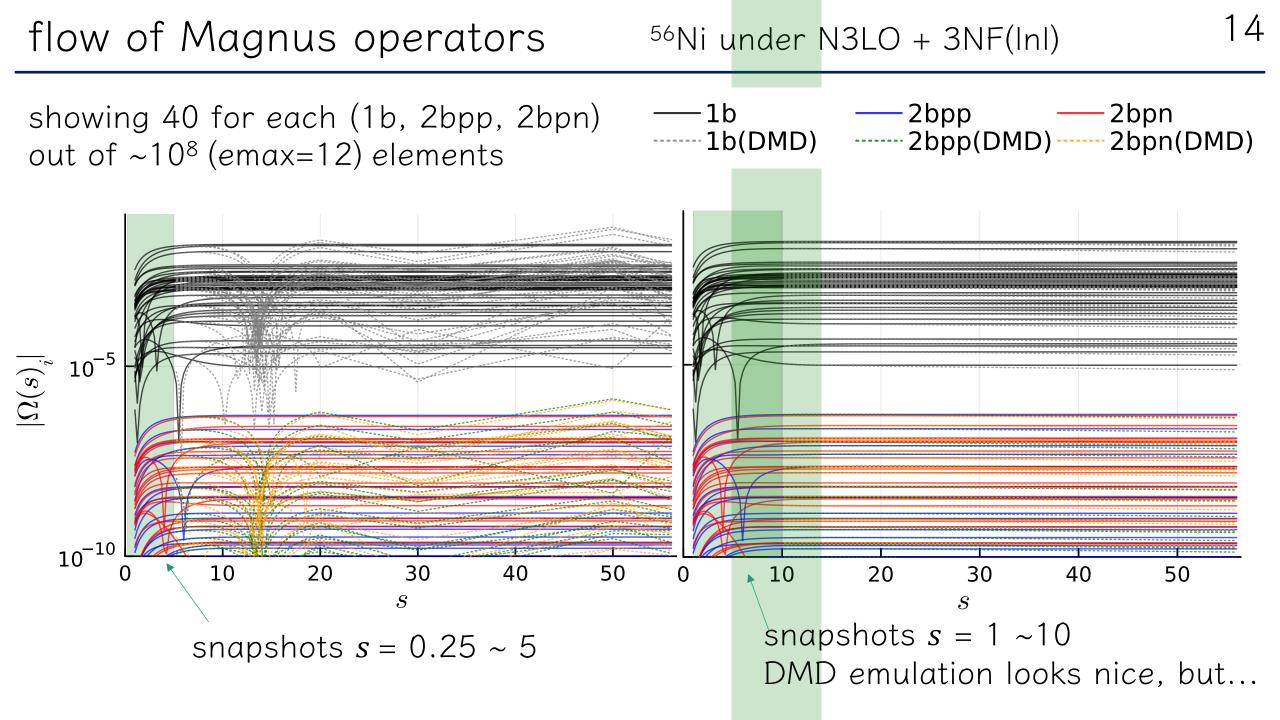
12

In-medium Similarity Renormalization Group (IMSRG) ¹³

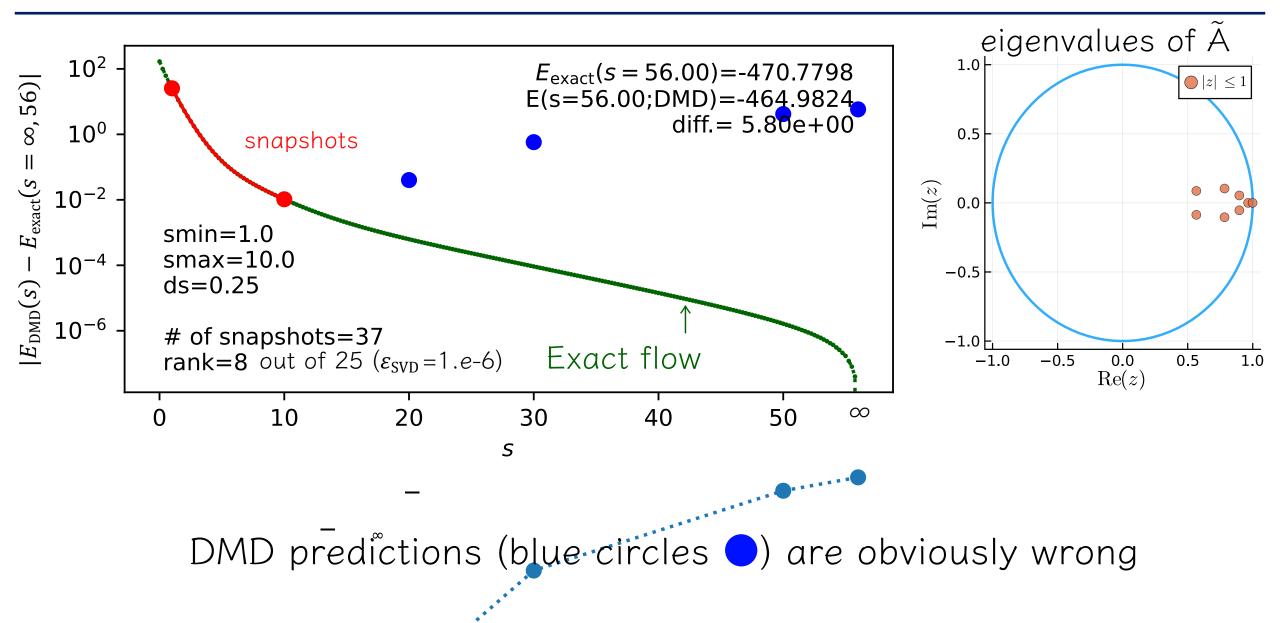


(P, Q) = (hole, particle), (valence, others), etc.

c.f. T.Miyagi's talk, afternoon

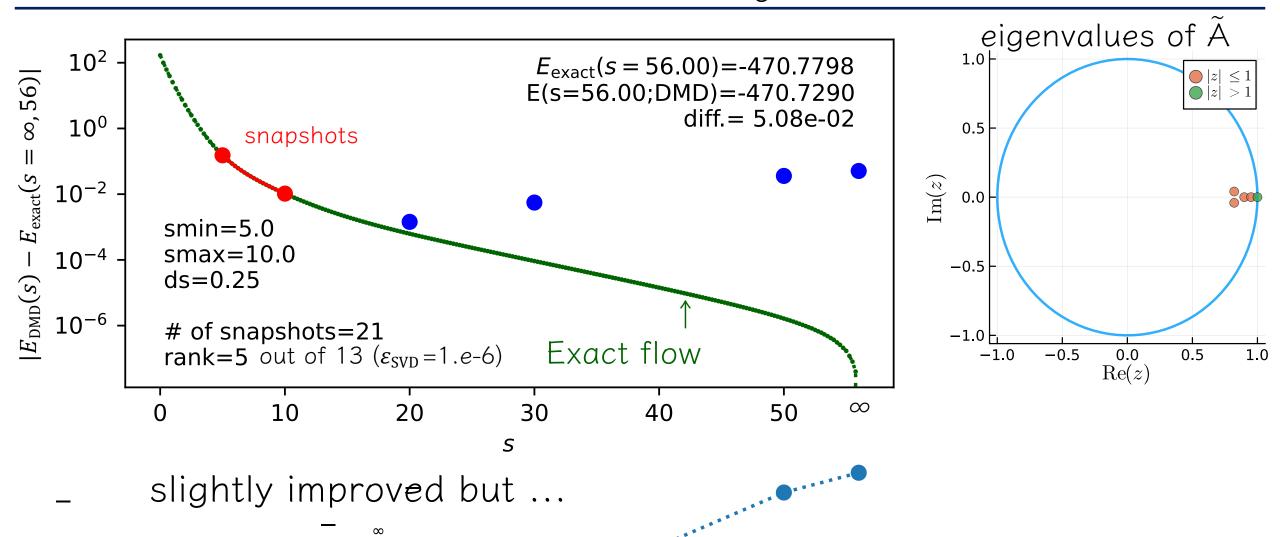


Errors on energy estimation



15

Errors on energy estimation discarding small s data...



16

→ non-linear nature of IM-SRG seen in smaller s region may not be well captured by DMD (single linear operator)

Errors on energy estimation feeding more larger s data...



PROS:

low-rank nature, cost on emulator is negligible \rightarrow X 3~5 speedup

DMD can learn (at least) "linear" part of quantum dynamics

c.f. ML approach, IMSRG-Net(PINNs) SY <u>PhysRevC.108.044303 (2023)</u>

accumulation of errors from imperfect linear map

no a priori knowledge where to stop high-fidelity calculations

If an emulator is fast enough, you can make a diagnostic on emulator by e.g., looking at credible intervals of emulator predictions

Summary

Surrogate models/Emulators matter!!

- Eigenvector continuation
- Dynamic Mode Decomposition

T. Duguet et al., <u>Rev. Mod. Phys. 96, 031002 (2024</u>)

Emulators for IM-SRG

DMD & Neural Network (For the latter, see appendix)

Both work fine for "linear" part of the IM-SRG flow, They are complementary. Next step will be to learn non-linear part

Related talks on emulators in nuclear physics : Hinohara-san@Tsukuba, Xilin Zhang@MSU/FRIB

NuclearToolkit,jl: Julia package for structure calculations SY, Journal of Open Source Software, 7(79), 4694,(2022)

v.0.4.2 (Mar. 2024)

• ChiEFTint \sim 9,000 lines

- NN potential, Entem-Machleidt(N3LO), EMN(N4LO)
- SRG in momentum space (NN-only)
- read 3NFs by NuHamil code (T. Miyagi@Tsukuba)
- ◆ etc.

• HartreeFock \sim 3,500 lines

- ♦ spherical HF
- Møller-Plesset (a.k.a MBPT)
- Normal ordering (including TNO/ENO)

• IM-SRG ~ 3,000 lines

IMSRG &VS-IMSRG (only scaler ones for now) emulator for Magnus-IMSRG(2) with Dynamic Mode Decomposition (DMD)

eigenvector continuation SY and N.Shimizu <u>PTEP 2022 053D02</u>

EC: shell model emulator

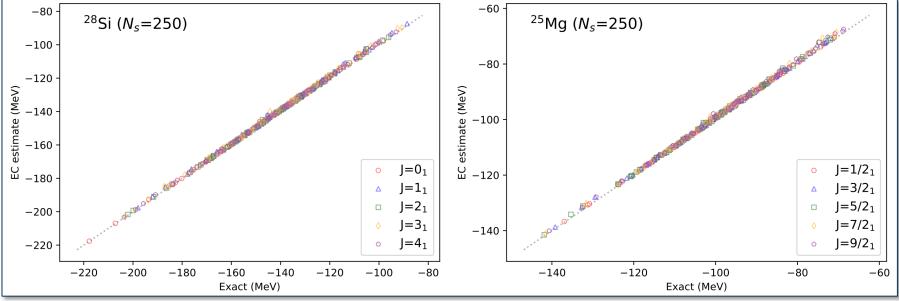
Example:

```
sd-shell (^{16}O core + 0d5/0d3/1s1 valence orbits)
```

```
parameters: 66 (3 SPEs & 63 TBMEs, w/ isospin)
```

target nuclei: ²⁵Mg (vp=4,vn=5), ²⁸Si (vp=vn=6, dim. ~ 90,000)

sampling 5 states for given total J at 50 (random) different points ($5 \times 50=250$ samples) around USDB



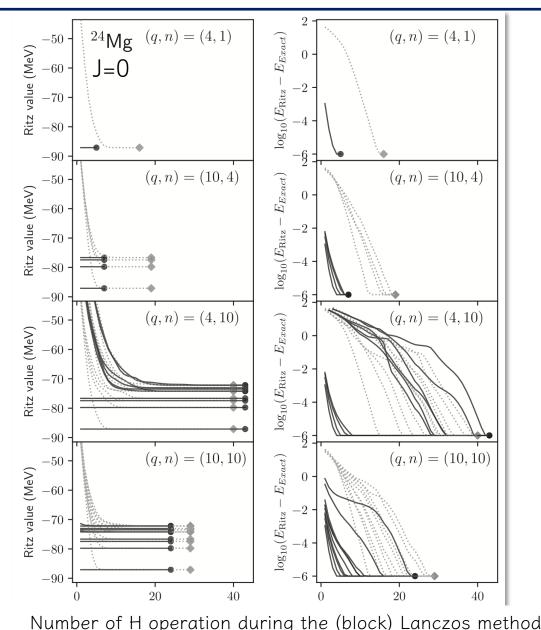
"validation" for 100 random parameters

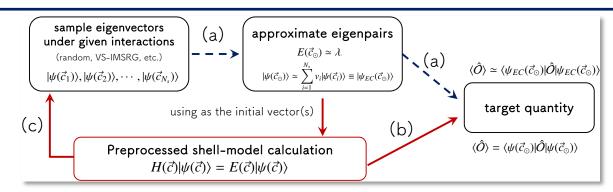
EC approximates energies within a few percent accuracy

$$\begin{split} \tilde{H}\vec{v} &= \lambda N\vec{v}, \\ \tilde{H}_{i,j} &= \langle \psi(\vec{c}_i) | H(\vec{c}_{\odot}) | \psi(\vec{c}_j) \rangle, \\ N_{i,j} &= \langle \psi(\vec{c}_i) | \psi(\vec{c}_j) \rangle. \end{split} \qquad \begin{aligned} E(\vec{c}_{\odot}) &\simeq \lambda, \\ |\psi(\vec{c}_{\odot})\rangle &\simeq \sum_{i=1}^{N_s} v_i | \psi(\vec{c}_i) \rangle \equiv |\psi_{EC}(\vec{c}_{\odot})\rangle. \end{split}$$

EC: As a Lanczos preprocessor

SY and N.Shimizu, PTEP 2022 053D02 (2022)





q: size of initial "block" vector

n: # of excited states of interest

dotted: initialized by random vectors

solid: initialized by EC eigenvectors

Starting from better initial guess, # of manipulation could be reduced!!

Exception => (q, n) = (4, 10)

since the emulator is trained with 5 lowest states, such emulator do not have much info. on higher states

EC: To feed more samples...

SY and N.Shimizu, <u>PTEP 2022 053D02 (2022)</u>

Sampling itself is not easy ...

$$\begin{split} \tilde{H}\vec{v} &= \lambda N\vec{v}, \\ \tilde{H}_{i,j} &= \langle \psi(\vec{c}_i) | H(\vec{c}_{\odot}) | \psi(\vec{c}_j) \rangle, \quad \leftarrow \text{most time-consuming part} \\ N_{i,j} &= \langle \psi(\vec{c}_i) | \psi(\vec{c}_j) \rangle. \end{split}$$

> You don't need to explicitly calculate $H(C_{\odot})|\psi(cj) >$ for each parameter C_{\odot} to evaluate H-tilde above: all you need is 1&2-body transition densities

 $\tilde{H}_{i,j} = \sum_{k} h_{k}^{(1)} \times \underbrace{\text{OBTD}_{k}}_{i,j} + \sum_{k} \underbrace{V_{J}(abcd)_{k}}_{\text{TBTD}_{k}} \times \underbrace{\text{TBTD}_{k}}_{i,j}$

> If you want to increase sample number (for better accuracy),

prepare new sample (green) and calc. overlap (transition densities)

between new w.f. and previous samples (red)

s: sampled w.f.s

$$\langle \psi_{s} | H | \psi_{s} \rangle$$

 $\langle \psi(c') | H | \psi_{s} \rangle$
 $\langle \psi(c') | H | \psi(c') \rangle$

First attempt to apply DMD to IMSRG

Jacob Davison, Ph.D. dissertation, MSU, 2023:

"Theoretical and computational improvements to the in-medium similarity renormalization group"

 $H(s) = \mathcal{U}(s)H(0) = \{\Phi \exp(\Omega t)\Phi^{\dagger}\}H(0)$

"DMD emulation will treat H(s) as a one-dimensional vector" chapter7

chapter8

sensitivity analysis

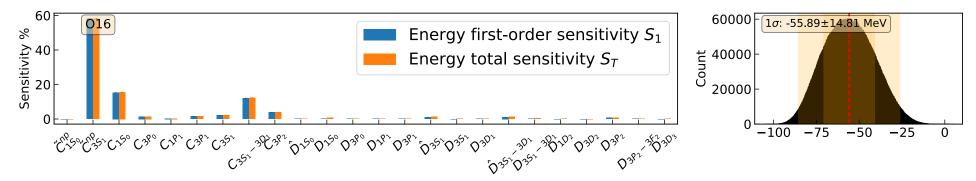
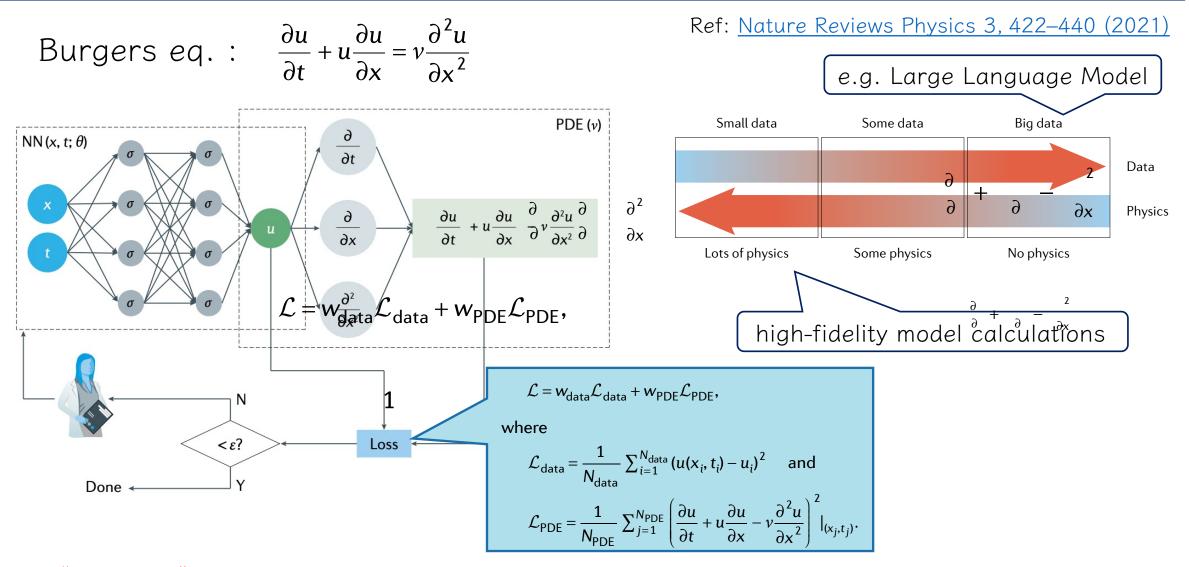


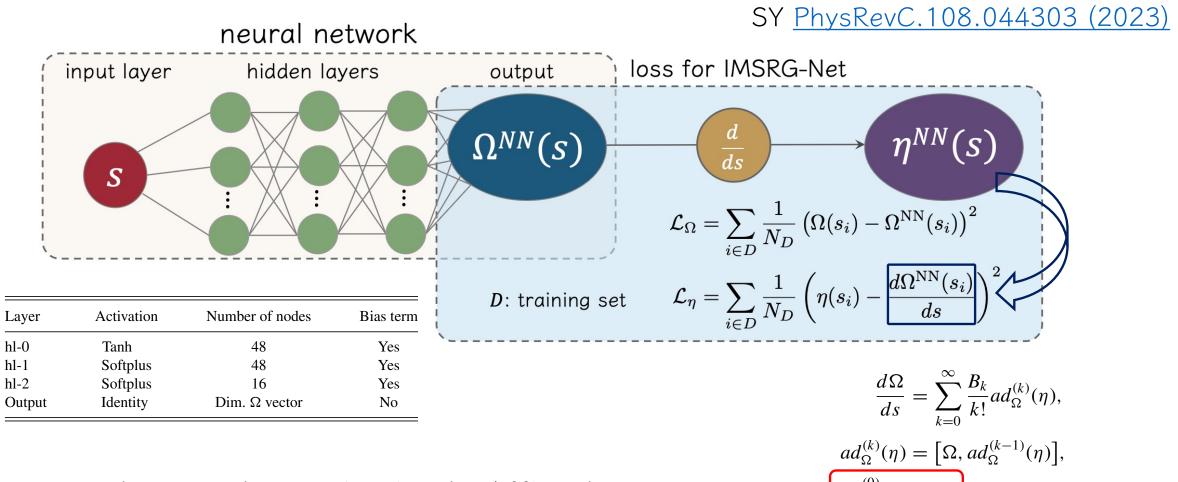
Figure 8.1 First-order and total sensitivity of the IMSRG(2) ground-state energy for ¹⁶O energy to variation of the LECs around the standard N³LO(500) interaction of Entem and Machleidt [4]. The left panel contains the sensitivity information per LEC. The right panel plots the total variance in the energy. The shaded region in the variance plot represents the 1σ and 2σ range.

ML example: Physics-Informed Neural Networks (PINNs)



"natural" expectation: you want neural networks approximating u(x,t) respecting underlying equation and boundary conditions, but...

IMSRG-Net: PINN-based solver for IMSRG



neural network part is simple Affine layers

 $ad_{\Omega}^{(0)}(\eta) = \eta$, taking leading term

and trained to minimize the sum of loss terms $\mathcal{L} = \mathcal{L}_{\Omega} + \lambda_n \mathcal{L}_n$

 $\lambda_{\eta} = 100$