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Condensed matter physics, Quantum Chemistry, Nuclear Physics, etc.

share issues on...

- exponential growth of the size of Hilbert space

- repeating simulations under tons of different params for 

quantifying uncertainties/inverse problem (e.g. nuclear force)

Why surrogate models matter ? 1

surrogate models, emulators, reduced order models, ...

you may call them in different ways



Difference between nuclei and other systems 2

Quantum chemistry:

“99 > % of energy of a molecule in equilibrium 

is explained within Hartree-Fock level”

(i.e., single Slater determinant)

rest 1 % is called correlation energy

Møller ‒ Plesset (MP a.k.a MBPT)

Coupled Cluster Single and Double (CCSD)

CCSD + Triple (CCSDT)

Full Configuration interaction (Full-CI)

Interaction is highly non-perturbative & uncertain 

many channels, three-nucleon force,...

56Ni under modern Nuclear Force (Chiral EFT)

HF = - 302.716 MeV

HF + MP2 + MP3 = -473.089 MeV
(MP2 = -152.533, MP3 = -17.716) 

How dare people say perturbation theory !!

c.f. Energy (Exp.) = -483.996 MeV

Nuclear physics:

accurate but heavy



Nuclear landscape 3

Fig. from UNEDF

“Terra incognita” in nuclear physics

- unstable nuclei (e.g. r-process path)

- superheavy nuclei

- etc.

The scope of Ab initio and CI 
is gradually expanding, but still limited

The connection between EDF and 
nuclear force is unclear



Reduced order models/surrogate models 21

T. Duguet et al., Rev. Mod. Phys. 96, 031002 (2024)
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Pioneering work in nuclear physics community 21

In 2018, a seminal paper is published:
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A common challenge faced in quantum physics is finding the extremal eigenvalues and eigenvectors of a
Hamiltonian matrix in a vector space so large that linear algebra operations on general vectors are not
possible. There are numerous efficient methods developed for this task, but they generally fail when some
control parameter in the Hamiltonian matrix exceeds some threshold value. In this Letter we present a new
technique called eigenvector continuation that can extend the reach of these methods. The key insight is that
while an eigenvector resides in a linear space with enormous dimensions, the eigenvector trajectory generated
by smooth changes of the Hamiltonian matrix is well approximated by a very low-dimensional manifold. We
prove this statement using analytic function theory and propose an algorithm to solve for the extremal
eigenvectors. We benchmark the method using several examples from quantum many-body theory.

DOI: 10.1103/PhysRevLett.121.032501

We address the problem of finding the extremal eigenval-
ues and eigenvectors of a Hamiltonian matrix that is too large
to store in computer memory. This problem occurs regularly
in quantummany-body theory and all existingmethods either
use Monte Carlo simulations, diagrammatic expansions,
variational methods, or some combination. While these
methods can be quite efficient, they can break down when
one or more parameters in the Hamiltonian exceed some
tolerance threshold. InMonte Carlo simulations the difficulty
is caused by sign oscillations that cause positive and negative
weights to cancel. In diagrammatric expansions the problem
is the divergence of the series expansion, and in variational
methods the obstacle is capturing the details of the wave
function using a variational ansatz or truncated basis expan-
sion. In this Letter we introduce a new variational technique
called eigenvector continuation (EC) that can be used to
salvage the most difficult cases.
In the mathematical literature, the terms eigenvector

continuation [1–3], subspace tracking [4], and successive
constraint method for subspace acceleration [5] refer to the
computation of smoothly varying bases for invariant sub-
spaces of parameter-dependent matrices. Although related,
our approach is aimed at determining eigenvalues and
eigenvectors in a vector space so large that linear algebra
operations on general vectors are not possible. As a result,
Krylov space methods such as the Lanczos algorithm [6,7]
are not applicable in their usual formulation. Some exam-
ples of computational methods that can tolerate extremely
large-dimensional spaces are quantum Monte Carlo sim-
ulations and many-body perturbation theory. We assume

that we have a computational method that can perform a
limited set of operations such as inner products between
eigenvectors of different Hamiltonian matrices and ampli-
tudes of eigenvectors sandwiching specific matrices such as
a Hamiltonian matrix. In order to obtain results using only
this limited information, we must be careful to maintain
numerical accuracy and robustness in the presence of
collinearities among the eigenvectors.
In the following we demonstrate that when a control

parameter in the Hamiltonian matrix is varied smoothly,
the extremal eigenvectors do not explore the large dimension-
ality of the linear space. Instead they trace out trajectorieswith
significant displacements in only a small number of linearly
independent directions. We prove this statement using the
principles of analytic continuation. Since the eigenvector
trajectory is a low-dimensional manifold embedded in a very
large space, we can “learn” the eigenvector trajectory using
data where the eigenvector is computable and apply eigen-
vector continuation to address problems where the computa-
tional method breaks down.
Let us consider a finite-dimensional linear space and a

family of Hamiltonian matrices HðcÞ ¼ H0 þ cH1 where
H0 and H1 are Hermitian. Let jψ jðcÞi denote the eigen-
vectors of HðcÞ with corresponding eigenvalues EjðcÞ.
Since HðcÞ is Hermitian for real c and thus diagonalizable,
EjðcÞ has no singularities on the real axis, and we can
define jψ jðcÞi so that it also has no singularities on the real
axis. We now expand jψ jðcÞi as a power series about the
point c ¼ 0. The series coefficients for cn are jψ ðnÞ

j ð0Þi=n!,
where the superscript (n) denotes the nth derivative. An
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In the following, we review some of the concepts of
EC as well as the early literature. We consider a family of
matrix Hamiltonians HðθÞ that depends analytically on some
vector of control parameters θ, which we write in vector
notation. We assume that the matrix Hamiltonians are
Hermitian for all real values of the parameters. One particu-
larly interesting and important example is the affine case
where the dependence on each parameter decomposes as a
sum of terms

HðθÞ ¼
X

α

fαðθÞHα ð1Þ

for some functions fα and Hermitian matrices Hα. We are
interested in the properties of a particular eigenvector of HðθÞ
and its corresponding eigenvalue EðθÞ,

HðθÞjψðθÞi ¼ EðθÞjψðθÞi: ð2Þ

The basic idea of eigenvector continuation is that jψðθÞi is an
analytic function for real values θ, and the smoothness implies
that it approximately lies on a linear subspace with a finite
number of dimensions. We note that if there are exact
eigenvalue degeneracies, the relative ordering of eigenvalues
may change as we vary θ. However, the eigenvectors can still
be defined as analytic functions in the neighborhood of those
exact level crossings. The smoother and more gradual the
undulations in the eigenvectors, the fewer the needed dimen-
sions. A good approximation to jψðθÞi can be efficiently
found using a variational subspace composed of snapshots
of jψðθiÞi for parameter values θi. We note that for complex
values of the parameters the guarantee of smoothness no
longer holds.
At this point we note that other methods exist that are based

on projecting a large-scale linear algebra problem into a low-
dimensional subspace. Krylov methods, and, in particular,
Lanczos (or, more generally, Arnoldi) iteration for calculating
extremal eigenvalues of linear operators, are well established
[see Saad (2011) for a textbook discussion] and used broadly,
not only in physics. An important distinction compared to EC
is, however, that these Krylov methods are employed at
fixed θ, and thus they solve a much more limited problem.
In fact, many of the EC applications discussed in Sec. V
would typically use Lanczos iteration to determine the
individual jψðθÞi snapshots for the EC off-line stage.
Following Frame et al. (2018), we consider the Bose-

Hubbard model for identical bosons on a three-dimensional
cubic lattice as an illuminating and pedagogical example of
EC, specializing to four bosons on a 4 × 4 × 4 spatial lattice.
The parameter t is the coefficient for the kinetic energy,
and the parameter U is the coefficient for the pointlike
interaction between pairs of bosons. For this system the
relevant control parameter is the dimensionless ratio θ ¼ U=t.
A variational subspace is constructed from snapshots of the
eigenvectors for selected training parameters θj. With the
shorthand jψ ji ¼ jψðθjÞi, the norm matrix Ñij and projected
Hamiltonian matrix H̃ijðθÞ are given by

Ñij ¼ hψ ijψ ji; ð3Þ

H̃ijðθÞ ¼ hψ ijHðθÞjψ ji: ð4Þ

The generalized eigenvalue problem is then solved as dis-
cussed in Sec. III. While “norm matrix” is the name com-
monly used in the nuclear physics literature for the matrix of
inner products between vectors, we should note that this
matrix is called the Gram matrix in the standard mathematical
literature.
In Fig. 2 we show the ground-state energy E divided by t vs

U=t, along with an excited state. The exact ground-state
energies are shown with open circles, which reveal a sharp
bend near U=t ¼ −3.8. The sharp bend is caused by an
avoided level crossing of eigenvalues, and the abruptness of
the bend indicates that there are branch points located near the
real axis. EC results are shown for subspace dimensions
varying from 2 to 4. With snapshot parameter values at
U=t ¼ −2.0;−1.9;−1.8, and −1.7, the EC calculation is
capable of extrapolating past the sharp bend.
We can understand how eigenvector continuation is able to

extrapolate in this case by exploring the connection with
analytic continuation. We consider a power series expansion
of the eigenvector jψðθÞi around θ ¼ 0,

jψðθÞi ¼ lim
M→∞

XM

m¼0

jψ ðmÞð0Þi θ
m

m!
: ð5Þ

When the series converges, we can approximate jψðθÞi to any
desired accuracy as a finite sum of M þ 1 vectors jψ ðmÞð0Þi,
with m ranging from 0 to M.
The series will diverge when jθj exceeds the magnitude of

the nearest nonanalytic point. If HðθÞ is a finite-dimensional
matrix that depends analytically on θ, then the nonanalytic
behavior is associated with branch points where two or more
eigenvectors become the same vector (Kato, 2013). If HðθÞ is
a Hermitian matrix for real θ, then all of the branch points lie
away from the real axis and come in complex conjugate pairs.
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FIG. 2. Ground-state energy E of the Bose-Hubbard model
divided by t vs U=t. The exact ground-state energies are shown
with open circles, while the EC results are shown for variational
subspace dimensions varying from 2 to 4. To highlight the
avoided level crossing, the exact excited-state energies are also
shown as open squares. Adapted from Frame et al., 2018.
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⇑ several snapshots are enough to express eigenstates elsewhere

That have been proven in other quantum many-body systems

Equations

Sota Yoshida1,

1. Introduction

|ψ(⃗c1)⟩, |ψ(⃗c2)⟩, · · · , |ψ(⃗cNs )⟩

H(⃗c)|ψ(⃗c)⟩ = E(⃗c)|ψ(⃗c)⟩. (1)

The typical parametrization of the shell-model Hamiltonian is
the following:

H = H(1) + H(2) =
∑

ac

h(1)
ac c†acc +

1
4

∑

abcd

h(2)
abcdc†ac†bcdcc, (2)

H(2) =
1
4

∑

abcdJM

Nab(J)Ncd(J)A†(ab; JM)A(cd; JM)VJ(abcd),

(3)

Nab(J) = [(1 + δab)]1/2 ,Ncd(J) = [(1 + δcd)]1/2 , (4)

A†(ab; JM) =
∑

ma,mb

( jama jbmb|JM)c†jama
c†jbmb

(5)

A(cd; JM) =
∑

mc,md

( jcmc jdmd |JM)c jdmd c jcmc (6)

H̃v⃗ = λNv⃗, (7)
H̃i, j = ⟨ψ(⃗ci)|H(⃗c⊙)|ψ(⃗c j)⟩, (8)
Ni, j = ⟨ψ(⃗ci)|ψ(⃗c j)⟩. (9)

Then, the original eigenpairs can be approximated as

E(⃗c⊙) ≃ λ, (10)

|ψ(⃗c⊙)⟩ ≃
Ns∑

i=1

vi|ψ(⃗ci)⟩ ≡ |ψEC (⃗c⊙)⟩. (11)

⟨Ô⟩ ≃ ⟨ψEC (⃗c⊙)|Ô|ψEC (⃗c⊙)⟩, (12)

⟨Ô⟩ = ⟨ψ(⃗c⊙)|Ô|ψ(⃗c⊙)⟩. (13)

H̃i, j =
∑

k

h(1)
k × OBTDk +

∑

k

VJ(abcd)k × TBTDk, (14)

log L(⃗c) = − 1
N

N∑

i=1

(EEC,i (⃗c) − EExp.,i)2

2σ2
err,i

, (15)

σ2
err,i = σ

2
EC,typ. + σ

2
EC,i, (16)

log Pr(⃗c) = −Λ
2
||H(⃗c) − H(⃗cref.)||2. (17)

EExact(4+1 ) = −75.951 MeV, QExact(4+1 ) = +28.340 efm2,

EExact(4+2 ) = −75.454 MeV, QExact(4+2 ) = −25.682 efm2,

EEC(4+1 ) = −74.751 MeV, QEC(4+1 ) = −25.635 efm2,

EEC(4+2 ) = −73.825 MeV, QEC(4+2 ) = +27.599 efm2. (18)

OBTD( f i; ja jb; λ) ≡ 1√
2λ + 1

⟨ψJ f M f ||[c†ja ⊗ c̃ jb ](λ)||ψJi Mi⟩,

(19)

OBTDk ≡
√

2 jk + 1
2Ji + 1

OBTD(ii; jk jk; 0) = ⟨ψJi Mi ||Nk ||ψJi Mi⟩,
(20)

TBTD( f i; abcd; JabJcd; λ)

≡ 1√
2λ + 1

⟨ψJ f Mf ||[A†(ab; JabMab) ⊗ Ã(cd; Jcd Mcd)](λ)||ψJi Mi⟩,

(21)

Ã(cd; Jcd Mcd) ≡ (−1)Jcd+Mcd A( jc jd; Jcd − Mcd), (22)

TBTD ≡
√

2Jab + 1
2Ji + 1

TBTD( f i; abcd; JabJab; 0), (23)
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1. Suppose you have exact eigenstates 
at some points (taking snapshots)

2. Span the wavefunction by the samples
and solve generalized eigen val. prob.
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Incomplete list of EC applications

SY and N.Shimizu, PTEP 2022 053D02 (2022)

Coupled clusterS. König, A. Ekström, K. Hebeler et al. Physics Letters B 810 (2020) 135814

Fig. 1. Comparison of different emulators for the 4He ground-state energy using 12 training data points to explore a space where three LECs are varied. The left panel includes 
samples for both interpolation (solid symbols) and extrapolation (semi-transparent symbols). See main text on how these are defined. The right panel shows the same data 
restricted to interpolation samples (note the smaller axis range).

Fig. 2. Comparison of different emulators for the 4He ground-state energy using 64 
training data points to explore a space where all 16 LECs are varied.

and a Gaussian process for comparison. The Gaussian process is 
constructed using a standard squared exponential kernel with hy-
perparameters estimated from the maximum of the marginal log-
likelihood of the calibration data. A Python script able to run cal-
culations of this type is provided as Supplemental Material along 
with this Letter, with a brief description given in the appendix.

A representative example is shown in Fig. 1. In this case, calcu-
lations for the 4He ground-state energy are emulated as a function 
of three LECs using 12 training data points obtained in an Nmax =
16, h̄! = 36 MeV NSCM model space. Eigenvector continuation is 
seen to work exceptionally well (the difference to exact calcula-
tions for each point is negligibly small and cannot be resolved in 
the plot), whereas polynomial interpolation and the Gaussian pro-
cess struggle to provide accurate results even when we consider 
only validation points corresponding to interpolation within the 
convex hull of the set of training points (right panel in Fig. 1).

In fact, EC can achieve excellent results even with fewer than 
12 training data points in this particular case. Furthermore, EC re-
quires only a moderate increase in the number of training data as 
the dimension of the parameter space is increased. In Fig. 2 we 
show results for the 4He energy with all 16 LECs varied, using the 
same Nmax = 16, h̄! = 36 MeV NSCM model space as before. It is 
evident how EC can still provide accurate results while polynomial 
interpolation and the Gaussian process fail completely to emulate 
the data, even though only interpolation is considered in Fig. 2.

To fully appreciate the efficiency gain provided by the EC 
method, it is important to compare the overall computational cost 

Fig. 3. Speedup factor (ratio of estimated required floating-point operations) of EC 
emulation compared to direct calculation as function of the number of samples, i.e., 
number of calls to the emulator. The curve shows the result corresponding to the 
setup as in Fig. 2, i.e., varying 16 LECs and using an EC subspace constructed from 
64 training data points. The assumed number of matrix-vector products required for 
a Lanczos diagonalization in the full Nmax = 16 space is Nmv = 80 for this case (see 
appendix and main text for details). The theoretical limit indicates the max speedup 
reached asymptotically in the number of samples, which is 614 in the present case.

of the different methods considered above. The cost of emulating 
with EC is not severe because all relevant matrix operations, i.e., 
setting up the target Hamiltonian and solving a generalized eigen-
value problem, need only be performed in the small EC subspace. 
Besides the requirement of carrying out NEC exact calculations 
there is a one-time cost of matrix-matrix-matrix multiplications 
coming from projecting the Hamiltonian to the EC subspace. Thus, 
the benefit of emulating with EC will improve with the number 
of calls to the emulator. Asymptotically in the number of emu-
lator calls, the speedup of using EC is proportional to (M/NEC)2, 
where M is the dimensionality of the full-space problem. Typi-
cally, we find NEC ≈ 10 − 100 for problems with M ≈ 10000, thus 
easily yielding a speedup factor ∼ 104 or more. In Fig. 3 we show 
the speedup we achieved for the 4He problem benchmarked here. 
In this particular case the maximum speedup is limited to “only” 
a factor 614, stemming from the still comparatively small model 
space that suffices for the 4He calculation; it grows rapidly once 
one considers heavier nuclei. A detailed analysis of the computa-
tional cost is provided in the appendix.

With EC emulation we can efficiently sample all nuclear ob-
servables accessible by, e.g., the NCSM method across a relevant 
domain of LEC values with unprecedented efficiency. In Fig. 4 we 
present a proof-of-principle application by correlating selected ob-
servables in 2H and 4He across 104 LEC samples at NNLO [13,22]. 
Without EC emulation this would be an expensive analysis due to 
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exchange, and terms proportional to the pion and nucleon
masses. The analytical form of the NNLO Hamiltonian is
identical to the one of NNLOsat [20], including the
regularization scheme, which means that, for a particular
value α⃗ ¼ α⃗⋆, the Hamiltonian Hðα⃗⋆Þ will reproduce the
binding energy and radius predictions of NNLOsat. The
SPCC Hamiltonian for a target value α⃗ ¼ α⃗⊚ is constructed
by projecting Hðα⃗⊚Þ onto the subspace spanned by CC
wave functions obtained at Nsub different values for α⃗.
SPCC is a controlled approximation to the full-space CC
method, and it allows for rapid and accurate solutions to the
many-nucleon problem necessary for statistical computing.
In this Letter, we use the CC method in the singles and
doubles (CCSD) approximation.
The workhorse of the CC method is the similarity

transformed Hamiltonian H̄ðα⃗Þ ¼ e−Tðα⃗ÞHðα⃗ÞeTðα⃗Þ, where
in the CCSD approximation the cluster operator is trun-
cated at one-particle–one-hole and two-particle–two-hole
excitations, i.e., Tðα⃗Þ ¼ T1ðα⃗Þ þ T2ðα⃗Þ. For clarity, we
have indicated the implicit dependence on α⃗. The CCSD
similarity transformation is nonunitary and renders H̄ðα⃗Þ
non-Hermitian, and we thus introduce Nsub biorthogonal
left and right CC ground states,

hΨ̃j ¼ hΦ0j½1þ Λðα⃗Þ&e−Tðα⃗Þ; jΨi ¼ eTðα⃗ÞjΦ0i: ð1Þ

Here Λðα⃗Þ ¼ Λ1ðα⃗Þ þ Λ2ðα⃗Þ is a linear expansion in one-
particle–one-hole and two-particle–two-hole deexcitation
operators, and we have biorthonormality according to
hΨ̃jΨi ¼ 1. For notational simplicity, we will from here
on omit the explicit α⃗ dependence in the (de)excitation
operators and set Tðα⃗Þ ¼ T and Λðα⃗Þ ¼ Λ, respectively.
The reference state jΦ0i is built from harmonic oscillator
single-particle states, and we solve the CCSD equations in a
model space comprising 11 major oscillator shells with a
frequency ℏΩ ¼ 16 MeV. The matrix elements of the
three-nucleon interaction that enters the Hamiltonian are
truncated by the energy cut E3max ≤ 14. The CCSD result
for 16O with NNLOsat in this model space is −118.76 MeV,
which is within 1 MeVof the converged CCSD value using
a Hartree-Fock basis.
Using the Nsub different CCSD ground-state vectors in

Eq. (1), the matrix elements of the target Hamiltonian in the
subspace and the corresponding norm matrix are given by

hΨ̃0jHðα⃗⊚ÞjΨi ¼ hΦ0jð1þ Λ0Þe−T 0
Hðα⃗⊚ÞeT jΦ0i

¼ hΦ0jð1þ Λ0ÞeXH̄ðα⃗⊚ÞjΦ0i; ð2Þ

hΨ̃0jΨi ¼ hΦ0jð1þ Λ0ÞeXjΦ0i; ð3Þ

respectively. Here we also introduced eX ¼ e−T
0þT , and

H̄ðα⃗⊚Þ is the similarity transformed target Hamiltonian.
The left ground state hΨ̃0j ¼ hΦ0jð1þ Λ0Þe−T 0

is obtained
from Hðα⃗0Þ, and the right ground state eT jΦ0i is obtained
from Hðα⃗Þ. We can now solve the generalized non-
Hermitian Nsub × Nsub eigenvalue problem for the SPCC
target Hamiltonian to obtain the ground-state energy and
wave function in the subspace. With the SPCC wave
function, we can also calculate the expectation value of
any subspace-projected operator with matrix elements
hΨ̃0jOjΨi. Equations (2) and (3) can be evaluated using
Wick’s theorem, and closed form algebraic expressions are
given in the Supplemental Material [37]. Note that in
general the reference states for the Nsub different subspace
CC wave functions in Eq. (1) are nonorthogonal. This is a
nontrivial case and would require the generalized Wick’s
theorem [38,39] in order to evaluate the matrix elements of
the SPCC Hamiltonian and the norm matrix.
Results.—The SPCC predictions for the energy and

charge radius in 16O as a function of the LEC C1S0 in
the Hamiltonian are shown in Fig. 1. Using Nsub ¼ 5 exact
CCSD ground-state vectors, from a small region of C1S0
values, points 1–5 in Fig. 1, the SPCC method extrapolates
to the exact CCSD results across a large C1S0 range. With
Nsub ¼ 3 CCSD vectors, points 1–3 in Fig. 1, the radius
extrapolation deteriorates far away from the exact solu-
tions, while the energy predictions remain more accurate.
We now move to the challenging case where all 16 LECs

at NNLO can vary. In the following, we analyze two SPCC
Hamiltonians based on Nsub ¼ 64 and Nsub ¼ 128 CCSD

FIG. 1. SPCC results for 16O, using three or five subspace
vectors, for different values of the LEC C1S0 . The red diamonds
indicate exact CC calculations at the singles and doubles level
(CCSD). The NNLOsat point is indicated with a dashed
vertical line.
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No-core shell model (Full-CI) Valence CI
PTEP 2022, 053D02 S. Yoshida and N. Shimizu

Fig. 2. Comparison between the exact energy eigenvalues and the EC estimates for 100 random interac-
tions. The left and right panels show the five yrast states of 28Si and 25Mg, respectively.

accuracy of EC approximate wavefunctions utilizing the preprocessing. Finally, we will men-
tion the extensibility of the proposed method for larger systems in Sect. 3.7.

3.1 Calculations of sd-shell nuclei with ShellModel.jl
Our new shell-model code, ShellModel.jl, is designed to make sample eigenvectors efficiently
and to demonstrate the efficiency of the emulator and the preprocessing with EC. With
ShellModel.jl, the execution time to evaluate 10 lowest states of 28Si, which has the largest
M-scheme dimension in the full sd-shell space (93 710 for M = 0), is about 3 seconds on a
MacBook Air (2020, Apple M1). We provide the sample codes in the GitHub repository [43],
and further instructions for the sample codes are given in Sect. B in the online supplementary
material.

To make the sample eigenvectors, we generated 50 random sd-shell interactions by adding
Gaussian random values with the standard deviation σ int. = 1.0 MeV to the USDB interac-
tion [28]. Hereafter, the terms “random interaction” and “sample” denote those by σ int. = 1
unless otherwise mentioned. In the next section, we also discuss the results with σ int. = 3 and
samples utilizing Latin hypercube sampling [58]. The USDB is a phenomenological sd-shell in-
teraction constructed by a G-matrix [59] and the chi-square fit using 608 pieces of data in 77
nuclei. In accordance with the USDB interaction having the isospin symmetry, the Hamiltoni-
ans are defined in the 66D parameter space (3 for SPEs and 63 for TBMEs). Next, we calculated
the five lowest eigenvectors with J = 0, 1, 2, 3, 4 (for even nuclei) and J = 1/2, 3/2, 5/2, 7/2, 9/2
(for odd) under the 50 random interactions, i.e., sampling 250 eigenvectors in total for
each J.

3.2 Approximate eigenpairs by the eigenvector continuation
In what follows, we show the results of approximate eigenpairs by EC. Using the samples dis-
cussed in the previous subsection, we solved Eq. (7) to estimate the approximate eigenvalues
for 100 other random interactions, which were made in the same way as above, and compare
them to the exact values. In the following, the 100 random interactions are referred to as the
validation set.

In Fig. 2, we show the EC estimates of five yrast states for 28Si (J = 0, 1, 2, 3, 4) and 25Mg
(J = 1/2, 3/2, 5/2, 7/2, 9/2) in comparison with the exact values. One can see from Fig. 2 that
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Bogoliubov-MBPT
example, nonperturbative) expansion methods are currently
employed to obtain accurate solutions of the nuclear many-
body Schrödinger equation (Hergert, 2020), many-body
perturbation theories of various flavors are of great use in
many applications (Tichai, Roth, and Duguet, 2020).
In this context, the generic parametric dependence of the

Hamiltonian takes the simple form

HðθÞ ¼ H0 þ θH1; ð17Þ

with θ a complex number, knowing that the case of physical
interest corresponds to θ ¼ 1. Eigenstates of HðθÞ can be
accessed via perturbation theory as a Taylor series around
θ ¼ 0, i.e., via an expansion with respect to eigenstates of H0.
Eventually an eigenstate jΨnðθÞi of HðθÞ and its eigenenergy
EnðθÞ are approximated at perturbative order P through

jΨðPÞ
n ðθÞi≡

XP

p¼0

θpjΦðpÞ
n i; ð18Þ

EðPÞ
n ðθÞ≡

XP

p¼0

θpEðpÞ
n ; ð19Þ

where the corrections fðjΦðpÞ
n i; EðpÞ

n Þ;p∈Ng can be computed
from the eigenstates of H0 (Shavitt and Bartlett, 2009).
The key problem relates to the fact that the sequence

f(jΨðPÞ
n ðθÞi; EðPÞ

n ðθÞ);P∈Ng typically converges toward
(jΨnðθÞi; EnðθÞ) when P → ∞ only for jjθjj∈ ½0; Rc&, where
Rc denotes the convergence radius. If Rc < 1, the problem of
physical interest is inaccessible via perturbation theory.
In nuclear many-body calculations, several features can

lead to Rc < 1 (Tichai, Roth, and Duguet, 2020), such as
characteristics of the internucleon interactions, the choice of
H0, and the closed- or open-shell nature of the nucleus under
study. While appropriately acting on the first two aspects
allows one to bypass the problem in closed-shell nuclei
(Tichai et al., 2016), it is much more challenging to do so
in open-shell systems (Demol et al., 2021). In this context,
EC was shown to provide a systematic framework to
enlarge the convergence radius via analytic continuation;
i.e., the EC employing the set of P-order perturbative snap-
shots fjΨðPÞ

n ðθiÞi; i ¼ 1;…; Pþ 1g acts as a resummation
technique delivering a controlled and variational sequence
of approximations to Enð1Þ for increasing nb ¼ Pþ 1∈N
(Demol et al., 2020; Franzke et al., 2022).
Figure 9 demonstrates that the sequence of approximations

to the ground-state energy of the open-shell 18O nucleus
obtained via EC converges rapidly from above toward E0ð1Þ
even though the corresponding perturbative series diverges.
Because the Hilbert space dimension employed is small
enough, the results can be validated against the exact value
of E0ð1Þ obtained via the exact diagonalization of the nuclear
Hamiltonian based on configuration interaction (CI) tech-
niques. While the use of EC to resum diverging perturbative
series was first dedicated to nuclear ground states (Demol
et al., 2020), it was later extended to excited eigenstates
(Franzke et al., 2022).

Another successful application of EC is to pairing in many-
body systems; see Baran and Nichita (2023) and Franzke et al.
(2024). However, Franzke et al. also manifested an afore-
mentioned limitation of EC, as they found that they could not
extrapolate between the normal and superfluid regimes if they
included snapshots from only one regime. That is, extrapo-
lating between different phases of large systems will generally
fail unless information on both is included; see also Sowiński
and Garcia-March (2022) and Brehmer et al. (2023).

V. LARGE HAMILTONIAN EIGENSYSTEMS

A powerful approach to obtaining (part of) the spectrum of
the Hamiltonian of a quantum system is the explicit diago-
nalization of a large (typically sparse) Hamiltonian matrix.
Such approaches are ideal candidates for the straightforward
application of EC formulated by Frame et al. (2018), i.e., a
Galerkin projection. Since they play a crucial role in nuclear
structure theory, many related applications of EC arose
relatively quickly in this context.

A. No-core shell-model emulators

As a first application that fueled many subsequent develop-
ments, König et al. (2020) used a no-core shell-model

FIG. 9. Ground-state energy of 18O from Bogoliubov many-
body perturbation theory (BMBPT) (blue circles) and BMBPT-
based EC (red squares) as a function of the perturbative order P
against exact diagonalization (solid line). The employed Hilbert
space dimension is small enough for the exact diagonalization
of the nuclear Hamiltonian to be accessible via configuration
interaction (CI) techniques. Top panel: absolute values. Bottom
panel: relative error to exact diagonalization. Adapted from
Demol et al., 2020.
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In Eq. (22) the trial scattering wave function jψ̃i in position
space is constrained to satisfy the asymptotic normalization
condition

ψ̃ lðrÞ ⟶r→∞
jlðqrÞ þ nlðqrÞ tan δl; ð23Þ

and

K̃E ¼ −
tan δl
2μq

ð24Þ

is the on-shellK matrix corresponding to the phase shift δlðEÞ.
This functional is stationary about the exact solution ψ such
that K½ψ þ δψ & ¼ KE þOðδKÞ2.
An EC-RBM emulator for the KVP uses a snapshot trial

basis as in Eq. (10), where each basis wave function satisfies
Eq. (23) and the overall constraint for the trial wave function,
which requires

Pnb
i¼1βi ¼ 1, is enforced by a Lagrange

multiplier. Varying the KVP functional with this constraint
yields a low-dimensional ðnb × nbÞ linear matrix problem. If
the Hamiltonian is affine in the parameters, all of the relevant
matrix elements can be precomputed in the off-line stage as
in Fig. 4. An example of this emulator from Furnstahl et al.
(2020) is shown in Fig. 12 for a model nucleon-nucleon
potential with two parameters (the strengths of two Gaussians).
The snapshot wave functions for four randomly chosen sets
of θi are shown in Fig. 12(a), while the corresponding phase
shifts are shown in Fig. 12(b). Despite no indication from
Fig. 12 that this is a good basis, the emulator is fast and
accurate through the full range of energies.
The KVP is sometimes itself used as a high-fidelity solution

method, where it is well known to be plagued with numerical
issues known as Kohn anomalies. These can be mitigated for
emulators by a more general formulation than Eqs. (22)–(24)
that uses multiple scattering matrices (rather than just the K
matrix); see Drischler et al. (2021, 2023) for details. This
approach was extended to coupled channels and to momentum
space by Garcia et al. (2023), with successful tests of the full
range of two-body scattering observables using a state-of-the-
art χEFT Hamiltonian with 25 parameters (up to six in each
partial wave channel, with the parameters emulated independ-
ently). Speedups of 2 orders of magnitude over high-fidelity
calculations were found even when using basis sizes large
enough to achieve a mean relative emulator error of the order
of 10−10 over a wide region in parameter space (in practice this
means that nb is equal to twice the number of parameters in a
given channel).
Another form of the KVP-type emulator avoids using a

Lagrange multiplier to constrain the normalization of basis
wave functions by introducing a trial basis only for the second
(scattering) term of Eq. (23) rather than for the full wave
function. The free wave function [the first term in Eq. (23)]
fixes the normalization. The Schwinger and Newton emu-
lators use alternative variational principles, with the latter
having a trial basis of K matrices rather than wave function
(Melendez et al., 2021); it is applied to the calibration of χEFT
parameters given by Svensson, Ekström, and Forssén (2024).
Each of these variational formulations has a Galerkin

counterpart, so we can use a Galerkin projection as an

alternative path to constructing the emulators. This is worked
out for each of the Kohn, Schwinger, and Newton emulators
given by Drischler et al. (2023). This also means that we can
directly formulate scattering emulators that do not have an
obvious variational counterpart. With the normalization fixed at
the origin (r ¼ 0) by a free solution value and first derivative,
the snapshot basis of scattering terms can be used in a Galerkin
projection of Eq. (12). Application of this emulator to calibrate
phenomenological optical potentials by Odell et al. (2024),
implemented with ROSE software from the BAND project
(Beyer et al., 2023), uses proper orthogonal decomposition
(see Sec. III.A) to optimize the basis and demonstrates a
method to handle the nonaffine parameters of the potential. Yet
another formulation builds on R-matrix theory with successful
applications to fusion observables (Bai and Ren, 2021; Bai,
2022). The frontier for scattering emulators is for three-body
problems. A proof-of-principle demonstration using the KVP
for three bosons was given by Zhang and Furnstahl (2022), and
tests of realistic nuclear scattering are in progress.

B. Finite-volume dependence and resonances

Another extension of EC, developed by Yapa and König
(2022), is concerned with extrapolating or interpolating the

(a)

(b)

FIG. 12. (a) Scattering wave functions for a model nucleon-
nucleon potential at a fixed energy. The dot-dashed curves are for
four choices of θi ¼ fV0R; V0sg that compose the trial basis, the
dashed curve is for the target values, and the solid curve is the
prediction using the KVP emulator. The curves have a common
crossing point at the value of r where the second term in Eq. (23)
is zero. (b) Scattering phase shifts for the same parameter sets and
the emulator prediction. From Furnstahl et al., 2020.
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Dynamic Mode Decomposition (DMD) 

Fig 1.1 from Kutz et al., “Dynamic Mode Decomposition” SIAM

- various modes are decomposed into “dynamical modes”  

- one can reconstruct original snapshots (and make predictions)
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I. INTRODUCTION

The pioneering work of the application of the DMD
to nuclear many-body problems is the work by Michigan
State University group [? ].

II. BASICS

A. In-medium similarity renormalization group

Throughout this work, we truncate the operators up
to the normal-ordered two-body operators, which is usu-
ally called IMSRG(2) truncation. However, constructing
emulators and applying the DMD is not limited to the
IMSRG(2) truncation.

For the sake of simplicity, let us consider the only
56Ni nucleus under the single interaction, which is the
so-called EM500 NN + 3NF(lnl) by V. Somà et al. The
adopted Hamiltonian is known to give a reasonable bind-
ing energies and radii for 4He – 68Ni.

The NN part is regularized using similarity renormal-
ization group (SRG) transformation with λ = 2.0 fm−1,
and the 3NF is consistently regularized under the local-
nonlocal (lnl) regulator with λ = 2.0 fm−1. Interested
readers are referred to the Ref. [? ] for more details.

B. Dynamic mode decomposition

Dynamic mode decomposition (DMD) is a data-driven
method to extract the coherent structures from the time
series data. DMD is originally developed in the context
of fluid dynamics and has been widely used in various
fields such as neuroscience, finance, and so on. The basic
idea of DMD is to decompose the time series data into
the coherent structures, which are the eigenmodes of the
Koopman operator.

Let us consider a time series data x1,x2, · · · ,xN ,
where xi ∈ Rn. and define the data matrix X and Y
as

X ≡

⎛

⎝
| |
x1 · · · xN

| |

⎞

⎠ ,Y ≡

⎛

⎝
| |
x2 · · · xN+1

| |

⎞

⎠ . (1)

∗ syoshida@cc.utsunomiya-u.ac.jp

The Y is one step forward of the X. In general, the
evolution of the system, i.e. the relation between X and
Y , is nonlinear and can be written as

Y = F (X). (2)

The main idea of DMD is to approximate the nonlinear
operator F by the linear operator A

Y ≈ AX. (3)

The DMD algorithm is as follows:

1. Construct the data matrix X by stacking the snap-
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X =
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2. Compute the singular value decomposition (SVD)
of the data matrix X:

X = UΣV ∗, (5)

where U ∈ Cn×n, Σ ∈ Cn×n, and V ∈ CN−1×N−1.
This is usually done by the truncated SVD, i.e. we
keep only the first r singular values and the corre-
sponding singular vectors using a Krylov subspace
method:

X ≈ UrΣrV
∗
r , (6)

where Ur ∈ Cn×r, Σr ∈ Cr×r, and Vr ∈ CN−1×r.

3. Compute the matrix A by

A = XVrΣ
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wi of the matrix A.

5. Compute the DMD modes ϕi by
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Why DMD works? At the first glance, it is too much
approximation to replace the nonlinear operator by the
linear operator.
To use the DMD for the emulator, all the many-body
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Y , is nonlinear and can be written as
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The main idea of DMD is to approximate the nonlinear
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sponding singular vectors using a Krylov subspace
method:

X ≈ UrΣrV
∗
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Why DMD works? At the first glance, it is too much
approximation to replace the nonlinear operator by the
linear operator.
To use the DMD for the emulator, all the many-body

operators are vectorized and used as the snapshots. For

D× N D × N

D (dimension of many-body operator) > 107
N (# of snapshots) ~ 10 ‒ 103?

1.

2. SVD of X

3. Compute the matrix A using Moore-Penrose pseudo-inverse of X

4. Obtain the time evolution linear map in a latent space

→ truncated SVD

encoder 

decoder 

k-time step forward can be done in the latent space 
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applications to quantum many-body systems

Spin system

Quantum computing

|0⟩ H X

|φ0⟩ e−iH∆t

ℜs(∆t) = ℜ⟨φ0| e
−iH∆t |φ0⟩

|0⟩ H X

|φ0⟩ e−iH7∆t

ℜs(7∆t) = ℜ ⟨φ0| e
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...

Quantum Measurements
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ODMD for Eigenenergy Estimation

FIG. 3. ODMD applied to eigenenergy estimation. ODMD uses the real (or imaginary) part of the expectation value, s(k∆t) =

⟨φ0| e
−iHk∆t |φ0⟩, of time evolution with respect to a reference state |φ0⟩. This data can be measured efficiently on a quantum

processor, for example by means of the Hadamard test. ODMD constructs a pair of Hankel matrices X,X′ using Takens’
embedding (matrix elements of the same color are equal) and generates the DMD system matrix A, which has a companion
structure. Under mild assumptions on ∆t, the eigenvalue λ̃0 of A with arg(λ̃0) = maxℓ arg(λ̃ℓ) converges to the true ground
state phase λ0 as the size of X,X′ increases. The ground state energy is estimated as Ẽ0 = −arg(λ̃0)/∆t.

each of some length d ≤ d⋆,

otk,d =

⎡

⎢
⎢
⎢
⎣

o(tk)
o(tk+1)

...
o(tk+d−1)

⎤

⎥
⎥
⎥
⎦
, 0 ≤ k ≤ K + 1. (7)

By construction, the first (d−1) entries of otk,d
are iden-

tical to the last (d − 1) entries of otk−1,d. Consequently,
the matrix assembled by arranging successive trajectories
otk as columns

Xk1:k2
=
[

otk1 ,d
otk1+1,d

· · · otk2 ,d

]

, (8)

has a Hankel form, i.e., the matrix elements on each anti-
diagonal are equal (see Fig. 3). In the embedding space,
we can then identify the closest linear flow,

X1:K+1
LS
= AX0:K =⇒ A = X1:K+1(X0:K)+, (9)

where ( · )+ denotes the Moore–Penrose pseudo-inverse.
The system matrix A assumes a companion structure
with just d free parameters (see Eq. (A9) in Appendix A).
The approximation to the system dynamics is then stored
in the d parameters inferred from measurements of K +
d + 1 delayed observables. We hence name our least-
squares embedding in the observable space the observable
dynamic mode decomposition (ODMD).

B. Estimating the ground state energy

We now specialize the ODMD method in pursuit of a
robust eigenenergy estimator for quantum systems. With

Hamiltonian H , the system dynamics are given by the
time evolution operator e−iHt (with the convention of
! = 1). Let E0 ≤ E1 ≤ · · · ≤ EN−1 denote the eigenen-
ergies of the Hamiltonian. We consider as our observable
the complex-valued overlap,

s(k∆t) = ⟨φ0| e
−iHk∆t |φ0⟩ , (10)

whose real and imaginary parts can be separately mea-
sured, e.g., using the Hadamard test [41]. Upon arrang-
ing the delayed overlaps into a pair of time-shifted Hankel
matrices X,X′ ∈ C

d×(K+1),

X = X0:K , X
′ = X1:K+1, (11)

the eigenenergies of the Hamiltonian can then be simply
estimated by solving the standard eigenvalue problem,

AΨℓ = λ̃ℓΨℓ, (12)

where the matrix A is defined in Eq. (9). Intuitively, we
can read off our eigenenergy estimates Ẽℓ from the order-
ing of the phases arg(λℓ). The eigenvalue λ̃0 ≈ e−iE0∆t

attaining the maximal phase, arg(λ̃0) = maxℓ arg(λ̃ℓ) =
−minℓ Ẽℓ∆t, encodes the DMD approximation Ẽ0 to the
true ground state energy E0. For concreteness, we con-
struct our d×(K+1) data matrices using d = ⌊α(K+1)⌋
for α = 1

2 fixed throughout the main text. Schematically,
an overview of the ODMD approach for the ground state
problem is provided in Fig. 3.
To protect against both statistical noise and quantum

hardware noise, we exploit the least-squares formulation
given in Eq. (9), benefiting from its rigorous and robust
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can modify the following arguments using the Jordan normal
form of each matrix [50].

1. We compute the SVD of the matrix -0 as

-0 = *⌃+†
, (6)

where* is an "⇥" unitary matrix,+† is an (#�")⇥

(#�") unitary matrix, and ⌃ is an "⇥ (#�") matrix
with only the first min(" , # � ") diagonal elements
being nonzero. The diagonal elements of ⌃ are denoted
by f0 � f1 � · · · � fmin(" ,#�" )�1 � 0. We keep
only the first ' columns of * and + and the first ' ⇥ '

submatrix of ⌃. Here ' is the rank of the reduced SVD
approximation to -0 and is determined by the smallest
integer that satisfies f'/f0 < n with n being a cutoff.
As a result, we obtain an " ⇥ ' matrix *', an ' ⇥ '

diagonal matrix ⌃', and an ' ⇥ (# � ") matrix +
†

',
respectively. They satisfy

-0 ⇡ *'⌃'+
†

' . (7)

2. We compute the matrix �̃, which is the '⇥' projection
of �, as

�̃ = *
†

'-1+'⌃�1
' . (8)

Here we use the fact that �̃ ⇡ *
†

'�*', � = -1-
�1
0 ⇡

-1+'⌃�1
' *

†

', and *
†

'*' ⇡ 1', where 1' is an ' ⇥ '

identity matrix.

3. We diagonalize the matrix �̃ as

�̃, = ,⇤, (9)

where ⇤ = diag(_0, _1, . . . , _'�1) is a diagonal matrix
and , is an ' ⇥ ' unitary matrix.

4. We reconstruct the eigendecomposition of � from ,

and ⇤ approximately. The approximate dominant '

eigenvalues of � are given by ⇤, and the corresponding
' eigenvectors of � are given by columns of the " ⇥ '

matrix �, which is defined by

� = -1+'⌃�1
' , . (10)

Indeed, from Eq. (8) and Eq. (9), one can see that

�� ⇡ *' �̃*
†

'� = *' �̃*
†

'-1+'⌃�1
' ,

= *' �̃�̃, = *' �̃,⇤

= *'*
†

'-1+'⌃�1
' ,⇤ = *'*

†

'�⇤ ⇡ �⇤ (11)

holds.

5. We predict the time-series data 5= = 5 (= · �C) = 5 (C)

for = = # , # + 1, . . . , #max � 1 from � and ⇤. From
F= ⇡ �

=���1F0 ⇡ �⇤=��1F0 with��1 = ��1 being
the pseudoinverse of �, the time evolution of the time-
series data is approximately given by

F= ⇡ �⇤=b =
'�1’
:=0

�: (_:)
=
1: . (12)

Here the " component vector �: is the :th column of
�, and the vector b = (10 11 · · · 1'�1)

) is determined
by the initial vector F0 and the pseudoinverse of � as

b = ��1F0. (13)

The computational cost of the DMD is dominated by the com-
putation of the truncated SVD of -0. When the upper bound
'

upper for the rank of the truncated SVD is given in advance,
i.e., '  '

upper and '
upper

⌧ " , (# � "), the computational
cost of the DMD becomes O[" (# � ")'

upper
]. The cost

can be further reduced by applying the randomized SVD [56]
and is given by O[" (# � ") log '

upper
]. This cost is much

cheaper than the computational costO("
3
) of the direct eigen-

decomposition of � when " ⇠ (# � ").

III. APPLICATION TO THE QUANTUM DYNAMICS

We apply the DMD to the dynamics of quantum many-
body systems and discuss the accuracy and applicability of the
DMD. We specifically consider the following cases: (i) corre-
lation functions that exhibit multiple oscillatory modes and (ii)
correlation functions that exhibit oscillatory behavior and have
a power-law decay. In case (i), we choose the two-dimensional
(2D) transverse-field Ising model as a model system. For a
small finite system, the time evolution of equal-time spin-spin
correlation functions after a sudden quench exhibit oscillatory
behavior without damping. In case (ii), we choose the one-
dimensional (1D) transverse-field Ising model at the critical
point as a model system, where a strong long-range quantum
entanglement is expected providing us with a challenge in con-
ventional numerical simulations [57]. For a sufficiently large
system, the unequal-time (time-displaced) spin-spin correla-
tion functions exhibit oscillatory behavior with a power-law
decay on top of the convergence to a nonzero value in the
infinite-time limit. We show that the DMD can predict the
time evolution of the correlation functions in both cases with
high accuracy. Moreover, we discuss the error analysis of the
DMD.

A. Time-dependent correlation functions without damping

We focus on the transverse-field Ising model

� = ��

’
h8, 9 i

(
I
8 (

I
9 � �

’
8

(
G
8 , (14)

under the periodic boundary condition, where (
U
8 (U = G, H, I)

are the ( = 1/2 Pauli spins, � is the strength of the nearest-
neighbor interaction, and � is the strength of the transverse
magnetic field. The symbol h· · · i denotes nearest-neighbor
site pairs. Hereafter, we set the lattice constant 0 and the
Planck \ constant to unity. We take the units of energy and
time as � and �

�1, respectively, unless otherwise noted.
We obtain the time evolution of the equal-time longitudinal

spin-spin correlation functions in the following manner. We

transverse-field Ising model
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FIG. 4. DMD prediction of the equal-time longitudinal spin-spin
correlation function in the 2D transverse-field Ising model. We show
the time evolution of the correlation function for (a) C 2 [0, 110], (b)
C 2 [400, 510], and (c) C 2 [800, 910]. The solid line is the exact
result, the filled blue circles are the input data, and the open orange
circles are the predicted data. The data points 5eq,= = 5eq (= · �C) =
5eq (C) are plotted only when = is an even number.

difference between the exact result and the DMD prediction is
at most 25% and is nearly less than 5% for most of the frequen-
cies l as shown in Fig. 5(c). Although the difference becomes
larger for peaks with smaller exact intensities as shown in
Fig. 5(d), the peak positions are exactly reproduced when the
peak intensity is larger than 10% of the maximum value of the
exact 5̃ (l) (see Appendix B for more detailed comparisons).
In this sense, the DMD is a more powerful method than the
GPR method at least in the prediction of the time evolution.

B. Time-dependent Correlation functions with a power-law
decay

Next, we focus on a more challenging case where the corre-
lation functions exhibit oscillatory behavior with a power-law
decay arising from the long-distance long-time quantum entan-
glement at a critical point of phase transition [57]. We consider
the transverse-field Ising model in Eq. (14) on a chain with an
infinite system size. We prepare the initial state |k
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FIG. 5. Fourier transform of the equal-time longitudinal spin-spin
correlation function in the 2D transverse-field Ising model. We re-
move a large value at l = 0. (a) Exact result when C 2 [0, 100)
(#max = 2000). (b) Comparison of the exact result (solid line)
and the DMD prediction (dashed line) for the absolute value of
the Fourier-transformed correlation function when C 2 [0, 1000)
(#max = 20000). (c) Relative difference between the exact result
and the DMD prediction. (d) Magnified views of Fig. 5(b). The
position and intensity of each peak are also shown in the figure in the
order (position, intensity). All the positions of the peaks of the DMD
prediction coincide with those of the exact result.

ground state of the transverse-field Ising model at the critical
point �/� = �1D

c /� = 0.5 [65]. The transverse unequal-time
(time displaced) spin-spin correlation functions at distance A

and time displacement C are defined by

⇠
GG
uneq (A, C) = hk

0

0 |(
G
0 (0)(

G
A (C) |k

0

0i (19)

with (
G
A (C) = 4

8�C
(
G
A 4

�8�C . The 1D transverse-field Ising
model is integrable. The exact correlation functions can be
calculated after the Jordan-Wigner transformation from spin
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FIG. 8. DMD prediction of the unequal-time onsite transverse spin-
spin correlation function in the 1D transverse-field Ising model.
We show the time evolution of the absolute value of the corre-
lation function for (a) C 2 [0, 1000) and (b) that in the logarith-
mic scale. The magnified views of the time evolution for (c)
C 2 [0, 110], (d) C 2 [200, 310], and (e) C 2 [400, 510] are also
shown. The solid line is the exact result, the filled circles are the
input data, and the open circles are the predicted data. The data
points 5uneq,= = 5uneq (= · �C) = 5uneq (C) are plotted only when = is a
multiple of 20.

because we can neglect the initial transient behavior that does
not follow the power-law decay in a strict sense. The effect of
the shift of the origin of the time series will be discussed in
Appendix C.
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exact result (solid line) and the DMD prediction (dashed line) for the
absolute value of the Fourier-transformed correlation function. (b)
Relative difference between the exact result and the DMD prediction.
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FIG. 10. Time evolution of the equal-time longitudinal spin-spin
correlation function after a sudden quench in the 2D transverse-field
Ising model on a finite-size square lattice with additive white Gaussian
noise (dashed pink line). As a reference, the time evolution without
noise is also shown (solid black line).

The comparison of the Fourier transform of the predicted
correlation function and the exact result is shown in Fig. 9(a).
Because the l = 0 component of the Fourier transform is
divergently large, we remove the value at l = 0. The relative
difference between the exact result and the DMD prediction is
less than 0.4% over all frequencies [see Fig. 9(b)].

C. Effects of noise

We investigate how noise in input data affects the prediction
by the DMD method. In experiments, time-series data are
always affected by noise. In numerical simulations based on
the Monte Carlo method, we often need to average over many
samples to obtain the time-series data; consequently, the data
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In-medium Similarity Renormalization Group (IMSRG)

P-Q coupling
↓

P-space

Q-space

s=0 (e.g. HF)

(P, Q) = (hole, particle), (valence, others), etc.

IMSRGflow: 
 

K. Tsukiyama, S. K. Bogner, and A. Schwenk, PRL 106, 222502 (2011), PRC 85, 061304 (2012). 
S.R.Stroberg et al., Annu. Rev. Nucl. Part. Sci. 2019. 69:307‒362 (2019) 
T.D.Morris et al., PRC 92, 034331 (2015)

Magnus formulation

s=∞

c.f. T.Miyagi’s talk, afternoon  
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https://doi.org/10.1103/PhysRevLett.106.222502
https://doi.org/10.1103/PhysRevC.85.061304
https://doi.org/10.1146/annurev-nucl-101917-021120
https://doi.org/10.1103/PhysRevC.92.034331


flow of Magnus operators 56Ni under N3LO + 3NF(lnl)

snapshots 𝑠	= 0.25 ~ 5 snapshots 𝑠 = 1 ~10
DMD emulation looks nice, but...

showing 40 for each (1b, 2bpp, 2bpn)
out of ~108 (emax=12) elements
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Errors on energy estimation 

snapshots

DMD predictions (blue circles ●) are obviously wrong
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Errors on energy estimation 

snapshots

out of 13 (𝜀SVD	=1.e-6) 

discarding small s data...

slightly improved but ...

→ non-linear nature of IM-SRG seen in smaller s region
    may not be well captured by DMD (single linear operator)

∞
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Errors on energy estimation 

snapshots

∞

out of 19 (𝜀SVD	=1.e-6) 

feeding more larger s data...

we got even better results, but...

it is nontrivial to take snapshots from where to where

|𝐸
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D
𝑠
−
𝐸 e
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ct
𝑠
=
∞
,5
6
|

↑
Exact flow

eigenvalues of A
~
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DMD + IMSRG

PROS:

  low-rank nature, cost on emulator is negligible → ✕ 3~5 speedup

  DMD can learn (at least) “linear” part of quantum dynamics

CONS:

 accumulation of errors from imperfect linear map
 
 no a priori knowledge where to stop high-fidelity calculations

 If an emulator is fast enough, you can make a diagnostic on emulator
 by e.g., looking at credible intervals of emulator predictions
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c.f. ML approach, IMSRG-Net(PINNs)
  SY PhysRevC.108.044303 (2023)

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.108.044303


Summary

Surrogate models/Emulators matter!! 

 - Eigenvector continuation

 - Dynamic Mode Decomposition

Emulators for IM-SRG

  DMD & Neural Network (For the latter, see appendix)

 Both work fine for “linear” part of the IM-SRG flow, 
 They are complementary. Next step will be to learn non-linear part

 Related talks on emulators in nuclear physics :
  Hinohara-san@Tsukuba, Xilin Zhang@MSU/FRIB

T. Duguet et al., Rev. Mod. Phys. 96, 031002 (2024)

https://doi.org/10.1103/RevModPhys.96.031002


NuclearToolkit.jl

lChiEFTint ～ 9,000 lines
u NN potential, Entem-Machleidt(N3LO), EMN(N4LO) 
u SRG in momentum space (NN-only)
u read 3NFs by NuHamil code (T. Miyagi@Tsukuba)
u etc.

lHartreeFock ～ 3,500 lines
u spherical HF 
u Møller-Plesset (a.k.a MBPT)
u Normal ordering (including TNO/ENO)

l IM-SRG ~ 3,000 lines
 IMSRG &VS-IMSRG (only scaler ones for now)
emulator for Magnus-IMSRG(2) with Dynamic Mode Decomposition (DMD) 

l                          ~8,700 lines

eigenvector continuation

SY. Journal of Open Source Software, 7(79), 4694
: Julia package for structure calculations

SY, Journal of Open Source Software, 7(79), 4694,(2022)

SY and N.Shimizu PTEP 2022 053D02

v.0.4.2 (Mar. 2024)

https://academic.oup.com/ptep/article/2022/5/053D02/6567885


EC: shell model emulator
Example: 

sd-shell (16O core + 0d5/0d3/1s1 valence orbits)

parameters: 66 (3 SPEs & 63 TBMEs, w/ isospin)

target nuclei: 25Mg (vp=4,vn=5), 28Si (vp=vn=6, dim. ~ 90,000) 

sampling 5 states for given total J at 50 (random) different points (5×50=250 samples) around USDB

EC approximates energies within a few percent accuracy

Equations

Sota Yoshida1,

1. Introduction

|ψ(⃗c1)⟩, |ψ(⃗c2)⟩, · · · , |ψ(⃗cNs )⟩

H(⃗c)|ψ(⃗c)⟩ = E(⃗c)|ψ(⃗c)⟩. (1)

The typical parametrization of the shell-model Hamiltonian is
the following:

H = H(1) + H(2) =
∑

ac

h(1)
ac c†acc +

1
4

∑

abcd

h(2)
abcdc†ac†bcdcc, (2)

H(2) =
1
4

∑

abcdJM

Nab(J)Ncd(J)A†(ab; JM)A(cd; JM)VJ(abcd),

(3)

Nab(J) = [(1 + δab)]1/2 ,Ncd(J) = [(1 + δcd)]1/2 , (4)

A†(ab; JM) =
∑

ma,mb

( jama jbmb|JM)c†jama
c†jbmb

(5)

A(cd; JM) =
∑

mc,md

( jcmc jdmd |JM)c jdmd c jcmc (6)

H̃v⃗ = λNv⃗, (7)
H̃i, j = ⟨ψ(⃗ci)|H(⃗c⊙)|ψ(⃗c j)⟩, (8)
Ni, j = ⟨ψ(⃗ci)|ψ(⃗c j)⟩. (9)

Then, the original eigenpairs can be approximated as

E(⃗c⊙) ≃ λ, (10)

|ψ(⃗c⊙)⟩ ≃
Ns∑

i=1

vi|ψ(⃗ci)⟩ ≡ |ψEC (⃗c⊙)⟩. (11)

⟨Ô⟩ ≃ ⟨ψEC (⃗c⊙)|Ô|ψEC (⃗c⊙)⟩, (12)

⟨Ô⟩ = ⟨ψ(⃗c⊙)|Ô|ψ(⃗c⊙)⟩. (13)

H̃i, j =
∑

k

h(1)
k × OBTDk +

∑

k

VJ(abcd)k × TBTDk, (14)

log L(⃗c) = − 1
N

N∑

i=1

(EEC,i (⃗c) − EExp.,i)2

2σ2
err,i

, (15)

σ2
err,i = σ

2
EC,typ. + σ

2
EC,i, (16)

log Pr(⃗c) = −Λ
2
||H(⃗c) − H(⃗cref.)||2. (17)

EExact(4+1 ) = −75.951 MeV, QExact(4+1 ) = +28.340 efm2,

EExact(4+2 ) = −75.454 MeV, QExact(4+2 ) = −25.682 efm2,

EEC(4+1 ) = −74.751 MeV, QEC(4+1 ) = −25.635 efm2,

EEC(4+2 ) = −73.825 MeV, QEC(4+2 ) = +27.599 efm2. (18)

OBTD( f i; ja jb; λ) ≡ 1√
2λ + 1

⟨ψJ f M f ||[c†ja ⊗ c̃ jb ](λ)||ψJi Mi⟩,

(19)

OBTDk ≡
√

2 jk + 1
2Ji + 1

OBTD(ii; jk jk; 0) = ⟨ψJi Mi ||Nk ||ψJi Mi⟩,
(20)

TBTD( f i; abcd; JabJcd; λ)

≡ 1√
2λ + 1

⟨ψJ f Mf ||[A†(ab; JabMab) ⊗ Ã(cd; Jcd Mcd)](λ)||ψJi Mi⟩,

(21)

Ã(cd; Jcd Mcd) ≡ (−1)Jcd+Mcd A( jc jd; Jcd − Mcd), (22)

TBTD ≡
√

2Jab + 1
2Ji + 1

TBTD( f i; abcd; JabJab; 0), (23)
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“validation” for 100 random parameters
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EC: As a Lanczos preprocessor

q: size of initial “block” vector

n: # of excited states of interest

dotted: initialized by random vectors

solid: initialized by EC eigenvectors

Exception => (q, n) = (4,10)

since the emulator is trained with 5 lowest states,
such emulator do not have much info. on higher states

Starting from better initial guess,
# of manipulation could be reduced!!

Number of H operation during the (block) Lanczos method
converged results are obtained at ●/◆

sample eigenvectors
under given interactions
(random, VS-IMSRG, etc.)

approximate eigenpairs

target quantity

Preprocessed shell-model calculation

using as the initial vector(s)

(a)
(a)

(b)(c)
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⟨Ô⟩ ≃ ⟨ψEC (⃗c⊙)|Ô|ψEC (⃗c⊙)⟩, (12)
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Ã(cd; Jcd Mcd) ≡ (−1)Jcd+Mcd A( jc jd; Jcd − Mcd), (22)

TBTD ≡
√

2Jab + 1
2Ji + 1

TBTD( f i; abcd; JabJab; 0), (23)

Preprint submitted to Computer Physics Communications May 14, 2021

← most time-consuming part 

<𝜓𝑠|H|𝜓𝑠	>

< 𝜓(𝑐′)	|H|𝜓𝑠	>

s: sampled w.f.s

<𝜓(𝑐!) |H|𝜓(𝑐′)	>

10

all you need is 1&2-body transition densities

SPEs                         TBMEs
i,j i,j

SY and N.Shimizu, PTEP 2022 053D02 (2022)

https://doi.org/10.1093/ptep/ptac057


First attempt to apply DMD to IMSRG

Jacob Davison, Ph.D. dissertation, MSU, 2023:
“Theoretical and computational improvements to the in-medium similarity renormalization group”

Figure 8.1 First-order and total sensitivity of the IMSRG(2) ground-state energy for 16O energy to variation
of the LECs around the standard N3LO(500) interaction of Entem and Machleidt [4]. The left panel contains
the sensitivity information per LEC. The right panel plots the total variance in the energy. The shaded region
in the variance plot represents the 1f and 2f range.

13,631,488 Sobol’ sequence samples of the RBF-r(50)IEM, totaling about 10 minutes of wall-

time on a high performance computer, in Figure 7.10. The same number of complete IMSRG(2)

calculations, on the same high performance computer, would require approximately 7700 years of

compute time. We sample within a ±10% relative variation of the standard N3LO LECs. The two

most sensitive parameters in ⇠̃3(1 and ⇠1(0 are consistent with the N2LO sensitivities presented by

Ekström and Hagen [3]. The first-order sensitivity matches almost exactly to the total sensitivity

in all LECs, meaning that variations in single LECs do not affect the others, at least according to

the fitted RBF-r(50)IEM.

The top four most sensitive parameters, in this model, are e⇠3(1 , ⇠1(0 , ⇠3(1�3⇡1 , and ⇠3%2 . Note

that we neglect the isospin breaking in the leading 1S0 contact e⇠=?
1(0

. ⇠1(0 is the subleading contact

in the 1(0 partial wave, so it probably renormalizes the core. e⇠3(1 and ⇠3(1�3⇡1 are in the deuteron

partial waves — the mixed waves is impacted by the strength of the tensor interaction. The S=1

P-waves (⇠3%G ), and ⇠3%2 in particular, probably renormalize short-range spin-orbit physics.

8.3 GSA with Chiral NNLO Two- Plus Three-Nucleon Interactions

In this section, we present a Sobol’ sensitivity analysis of the Chiral NNLO LECs by Ekström

et al. [1, 2], up to the 3B forces. Here we have performed the analysis using interactions constructed

from “delta-full” and “delta-less” chiral EFT. In this “delta-full” �NNLOGO(394) interaction we

explicitly add fixed resonance saturation values to the 23 and 24 LECs in the Fujita-Miyazawa

force, because the low cutoff allows us to absorb into the adjust of 23 and 24, without the need to
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sensitivity analysis

Algorithm 7.2 Pseudocode implementation which demonstrates the algorithm for projected DMD.
collect # observations from evolving dynamical system, at fixed width 3C
organize offset matrices - and -0, with shapes " ⇥ # � 1
compute truncated SVD on - ⇡ *A⌃A+⇤

A
compute �A = *⇤

A -
0+A⌃�1

A
compute eigendecomposition �A, = ,⇤
project back to full space � = -0+A⌃�1

A , or � = *A,
compute DMD mode amplitudes 1 = �†G0
expand dynamical state G: = �⇤:�11 ù for : > 0,

In Chapter 3.2, Equation 3.1, we expressed the continuous, unitary, B-dependent transformation

* (B) as the transformation which drives the target Hamiltonian toward a desired form (e.g., to the

minimal decoupling of an eigenvalue), and in the standard IMSRG approach, we “solve” for this

transformation implicitly by propagating the system of flow equations for the Hamiltonian. We can

also think of the transformation in the form

� (B) = U(B)� (0), (7.17)

where U(B) is an unknown “super operator” that acts on the algebra of second-quantized operators,

and encodes the desired continuous unitary transformation. The expression for the DMD expansion

in Equation 7.10 provides a description of exactly this form. Replacing G ! � so that the

coefficients of � (B) becomes the state variables tracked in G, we can express U(B) in terms of the

Koopman modes and frequencies as

� (B) = U(B)� (0) = {� exp (⌦C)�†}� (0) . (7.18)

Note that the product {� exp (⌦C)�†} is unitary, provided that the columns of � are sufficiently

linearly independent. We may take for granted that this transformation provides the desired evolution

behavior, simply because the transformation is informed by measurement data of the IMSRG flow.

Of course, this assumption is predicated on good measurement data, meaning the IMSRG flow

being measured is well-behaved to begin with. In this way, we consider the DMD a data-driven,

non-intrusive emulator for the IMSRG—“data-driven” in the sense that the DMD is built from, or

informed by, data measured from the evolving system, and “non-intrusive” in the sense that DMD

does not modify the IMSRG method itself.
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ML example: Physics-Informed Neural Networks (PINNs)
Ref: Nature Reviews Physics 3, 422‒440 (2021)

0123456789();: 

A common current theme across scientific domains 
is that the ability to collect and create observational data 
far outpaces the ability to assimilate it sensibly, let alone 
understand it4 (BOX 1). Despite their towering empiri-
cal promise and some preliminary success6, most ML 
approaches currently are unable to extract interpreta-
ble information and knowledge from this data deluge. 
Moreover, purely data- driven models may fit obser-
vations very well, but predictions may be physically 
inconsistent or implausible, owing to extrapolation or 
observational biases that may lead to poor generalization 
performance. Therefore, there is a pressing need for inte-
grating fundamental physical laws and domain knowl-
edge by ‘teaching’ ML models about governing physical 
rules, which can, in turn, provide ‘informative priors’ —  
that is, strong theoretical constraints and inductive 
biases on top of the observational ones. To this end, 
physics- informed learning is needed, hereby defined as 
the process by which prior knowledge stemming from 
our observational, empirical, physical or mathematical 
understanding of the world can be leveraged to improve 
the performance of a learning algorithm. A recent exam-
ple reflecting this new learning philosophy is the family 

of ‘physics- informed neural networks’ (PINNs)7. This 
is a class of deep learning algorithms that can seam-
lessly integrate data and abstract mathematical opera-
tors, including PDEs with or without missing physics 
(BOXES 2,3). The leading motivation for developing these 
algorithms is that such prior knowledge or constraints 
can yield more interpretable ML methods that remain 
robust in the presence of imperfect data (such as miss-
ing or noisy values, outliers and so on) and can provide 
accurate and physically consistent predictions, even for 
extrapolatory/generalization tasks.

Despite numerous public databases, the volume of 
useful experimental data for complex physical systems 
is limited. The specific data- driven approach to the 
predictive modelling of such systems depends crucially 
on the amount of data available and on the complexity  
of the system itself, as illustrated in BOX 1. The classical 
paradigm is shown on the left side of the figure in BOX 1, 
where it is assumed that the only data available are the 
boundary conditions and initial conditions whereas  
the specific governing PDEs and associated parameters 
are precisely known. On the other extreme (on the right 
side of the figure), a lot of data may be available, for 
instance, in the form of time series, but the governing 
physical law (the underlying PDE) may not be known 
at the continuum level7–9. For the majority of real appli-
cations, the most interesting category is sketched in the 
centre of the figure, where it is assumed that the physics 
is partially known (that is, the conservation law, but not 
the constitutive relationship) but several scattered meas-
urements (of a primary or auxiliary state) are available 
that can be used to infer parameters and even missing 
functional terms in the PDE while simultaneously recov-
ering the solution. It is clear that this middle category  
is the most general case, and in fact it is representative 
of the other two categories, if the measurements are too 
few or too many. This ‘mixed’ case may lead to much 
more complex scenarios, where the solution of the PDEs 
is a stochastic process due to stochastic excitation or an 
uncertain material property. Hence, stochastic PDEs 
can be used to represent these stochastic solutions and 
uncertainties. Finally, there are many problems involving 
long- range spatiotemporal interactions, such as turbu-
lence, visco- elasto- plastic materials or other anoma-
lous transport processes, where non- local or fractional 
calculus and fractional PDEs may be the appropriate 
mathematical language to adequately describe such 
pheno mena as they exhibit a rich expressivity not unlike 
that of deep neural networks (DNNs).

Over the past two decades, efforts to account for 
uncertainty quantification in computer simulations 
have led to highly parameterized formulations that may 
include hundreds of uncertain parameters for complex 
problems, often rendering such computations infeasible 
in practice. Typically, computer codes at the national labs 
and even open- source programs such as OpenFOAM10 or 
LAMMPS11 have more than 100,000 lines of code, making 
it almost impossible to maintain and update them from 
one generation to the next. We believe that it is possible 
to overcome these fundamental and practical problems 
using physics- informed learning, seamlessly integrat-
ing data and mathematical models, and implementing 

Key points

•	Physics-	informed	machine	learning	integrates	seamlessly	data	and	mathematical	
physics	models,	even	in	partially	understood,	uncertain	and	high-	dimensional	
contexts.

•	Kernel-	based	or	neural	network-	based	regression	methods	offer	effective,	simple		
and	meshless	implementations.

•	Physics-	informed	neural	networks	are	effective	and	efficient	for	ill-	posed	and	inverse	
problems,	and	combined	with	domain	decomposition	are	scalable	to	large	problems.

•	Operator	regression,	search	for	new	intrinsic	variables	and	representations,	and	
equivariant	neural	network	architectures	with	built-	in	physical	constraints	are	
promising	areas	of	future	research.

•	There	is	a	need	for	developing	new	frameworks	and	standardized	benchmarks		
as	well	as	new	mathematics	for	scalable,	robust	and	rigorous	next-	generation	
physics-	informed	learning	machines.

Multi- fidelity data
Data of variable accuracy.

Box 1 | Data and physics scenarios

The	figure	below	schematically	illustrates	three	possible	categories	of	physical	problems	
and	associated	available	data.	In	the	small	data	regime,	it	is	assumed	that	one	knows	all	
the	physics,	and	data	are	provided	for	the	initial	and	boundary	conditions	as	well	as	the	
coefficients	of	a	partial	differential	equation.	The	ubiquitous	regime	in	applications	is		
the	middle	one,	where	one	knows	some	data	and	some	physics,	possibly	missing	some	
parameter	values	or	even	an	entire	term	in	the	partial	differential	equation,	for	example,	
reactions	in	an	advection–diffusion–reaction	system.	Finally,	there	is	the	regime	with		
big	data,	where	one	may	not	know	any	of	the	physics,	and	where	a	data-	driven	approach	
may	be	most	effective,	for	example,	using	operator	regression	methods	to	discover		
new	physics.	Physics-	informed	machine	learning	can	seamlessly	integrate	data	and	the	
governing	physical	laws,	including	models	with	partially	missing	physics,	in	a	unified	way.	
This	can	be	expressed	compactly	using	automatic	differentiation	and	neural	networks7	
that	are	designed	to	produce	predictions	that	respect	the	underlying	physical	principles.
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in many- body systems (FIG. 1a). A similar example is 
the equivariant transformer networks31, a family of  
differentiable mappings that improve the robustness 
of models for predefined continuous transformation 

groups. Despite their remarkable effectiveness, such 
approaches are currently limited to tasks that are char-
acterized by relatively simple and well- defined physics or 
symmetry groups, and often require craftsmanship and 
elaborate implementations. Moreover, their extension 
to more complex tasks is challenging, as the underlying 
invariances or conservation laws that characterize many 
physical systems are often poorly understood or hard to 
implicitly encode in a neural architecture.

Generalized convolutions are not the only build-
ing blocks for designing architectures with strong 
implicit biases. For example, anti- symmetry under the 
exchange of input variables can be obtained in NNs by 
using the determinant of a matrix- valued function32. 
Reference33 proposed to combine a physics- based model 
of bond- order potential with an NN and divide structural 
parameters into local and global parts to predict inter-
atomic potential energy surface in large- scale atomistic 
modelling. In another work34, an invariant tensor basis 
was used to embedded Galilean invariance into the net-
work architecture, which significantly improved the NN 
prediction accuracy in turbulence modelling. For the 
problem of identifying Hamiltonian systems, networks 
are designed to preserve the symplectic structure of the 
underlying Hamiltonian system35 For example, REF.36 
modified an auto- encoder to represent a Koopman oper-
ator for identifying coordinate transformations that recast 
nonlinear dynamics into approximately linear ones.

Specifically for solving differential equations using 
NNs, architectures can be modified to satisfy exactly 
the required initial conditions37, Dirichlet boundary 
conditions37,38, Neumann boundary conditions39,40, 
Robin boundary conditions41, periodic boundary 
conditions42,43 and interface conditions41. In addition, if  
some features of the PDE solutions are known a priori, it is  
also possible to encode them in network architectures, 
for example, multiscale features44,45, even/odd symme-
tries and energy conservation46, high frequencies47 and 
so on.

For a specific example, we refer to the recent work 
in REF.48, which proposed new connections between 
NN architectures and viscosity solutions to certain 
Hamilton–Jacobi PDEs (HJ- PDEs). The two- layer archi-
tecture depicted in FIG. 1b defines R R→f : × [0, + ∞)n   
as follows
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which is reminiscent of the celebrated Lax–Oleinik formula. 
Here, x and t are the spatial and temporal variables, L is 
a convex and Lipschitz activation function, R∈ai  and 

R∈ui
n are the NN parameters, and m is the number  

of neurons. It is shown in REF.48 that f is the viscosity  
solution to the following HJ- PDE
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where both the Hamiltonian H and the initial data J are 
explicitly obtained by the parameters and the activation 

Lax–Oleinik formula
A representation formula  
for the solution of the 
Hamilton–Jacobi equation.

Box 3 | Physics- informed neural networks

Physics-	informed	neural	networks	(PINNs)7	seamlessly	integrate	the	information	from	
both	the	measurements	and	partial	differential	equations	(PDEs)	by	embedding	the	PDEs	
into	the	loss	function	of	a	neural	network	using	automatic	differentiation.	The	PDEs	could	
be	integer-	order	PDEs7,	integro-	differential	equations154,	fractional	PDEs103	or	stochastic	
PDEs42,102.
Here,	we	present	the	PINN	algorithm	for	solving	forward	problems	using	the	example		

of	the	viscous	Burgers’	equation
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with	a	suitable	initial	condition	and	Dirichlet	boundary	conditions.	In	the	figure,	the	left	
(physics-	uninformed)	network	represents	the	surrogate	of	the	PDE	solution	u(x,	t),	while	
the	right	(physics-	informed)	network	describes	the	PDE	residual	 ν+ −∂
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function	includes	a	supervised	loss	of	data	measurements	of	u	from	the	initial	and	
boundary	conditions	and	an	unsupervised	loss	of	PDE:
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Here	{(xi,	ti)}	and	{(xj,	tj)}	are	two	sets	of	points	sampled	at	the	initial/boundary	locations	
and	in	the	entire	domain,	respectively,	and	ui	are	values	of	u	at	(xi,	ti);	wdata	and	wPDE	are	the	
weights	used	to	balance	the	interplay	between	the	two	loss	terms.	These	weights	can		
be	user-	defined	or	tuned	automatically,	and	play	an	important	role	in	improving	the	
trainability	of	PINNs76,173.
The	network	is	trained	by	minimizing	the	loss	via	gradient-	based	optimizers,	such	as	

Adam196	and	L-	BFGS206,	until	the	loss	is	smaller	than	a	threshold	ε.	The	PINN	algorithm		
is	shown	below,	and	more	details	about	PINNs	and	a	recommended	Python	library	
DeepXDE	can	be	found	in	REF.154.

Algorithm 1: The PINN algorithm.
Construct	a	neural	network	(NN)	u(x,	t;	θ)	with	θ	the	set	of	trainable	weights	w	and	biases	b,	
and	σ	denotes	a	nonlinear	activation	function.	Specify	the	measurement	data	{xi,	ti,	ui}		
for	u	and	the	residual	points	{xj,	tj}	for	the	PDE.	Specify	the	loss	L	in	Eq.	(3)	by	summing		
the	weighted	losses	of	the	data	and	PDE.	Train	the	NN	to	find	the	best	parameters	θ*		
by	minimizing	the	loss	L.
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in many- body systems (FIG. 1a). A similar example is 
the equivariant transformer networks31, a family of  
differentiable mappings that improve the robustness 
of models for predefined continuous transformation 

groups. Despite their remarkable effectiveness, such 
approaches are currently limited to tasks that are char-
acterized by relatively simple and well- defined physics or 
symmetry groups, and often require craftsmanship and 
elaborate implementations. Moreover, their extension 
to more complex tasks is challenging, as the underlying 
invariances or conservation laws that characterize many 
physical systems are often poorly understood or hard to 
implicitly encode in a neural architecture.

Generalized convolutions are not the only build-
ing blocks for designing architectures with strong 
implicit biases. For example, anti- symmetry under the 
exchange of input variables can be obtained in NNs by 
using the determinant of a matrix- valued function32. 
Reference33 proposed to combine a physics- based model 
of bond- order potential with an NN and divide structural 
parameters into local and global parts to predict inter-
atomic potential energy surface in large- scale atomistic 
modelling. In another work34, an invariant tensor basis 
was used to embedded Galilean invariance into the net-
work architecture, which significantly improved the NN 
prediction accuracy in turbulence modelling. For the 
problem of identifying Hamiltonian systems, networks 
are designed to preserve the symplectic structure of the 
underlying Hamiltonian system35 For example, REF.36 
modified an auto- encoder to represent a Koopman oper-
ator for identifying coordinate transformations that recast 
nonlinear dynamics into approximately linear ones.

Specifically for solving differential equations using 
NNs, architectures can be modified to satisfy exactly 
the required initial conditions37, Dirichlet boundary 
conditions37,38, Neumann boundary conditions39,40, 
Robin boundary conditions41, periodic boundary 
conditions42,43 and interface conditions41. In addition, if  
some features of the PDE solutions are known a priori, it is  
also possible to encode them in network architectures, 
for example, multiscale features44,45, even/odd symme-
tries and energy conservation46, high frequencies47 and 
so on.

For a specific example, we refer to the recent work 
in REF.48, which proposed new connections between 
NN architectures and viscosity solutions to certain 
Hamilton–Jacobi PDEs (HJ- PDEs). The two- layer archi-
tecture depicted in FIG. 1b defines R R→f : × [0, + ∞)n   
as follows
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Box 3 | Physics- informed neural networks

Physics-	informed	neural	networks	(PINNs)7	seamlessly	integrate	the	information	from	
both	the	measurements	and	partial	differential	equations	(PDEs)	by	embedding	the	PDEs	
into	the	loss	function	of	a	neural	network	using	automatic	differentiation.	The	PDEs	could	
be	integer-	order	PDEs7,	integro-	differential	equations154,	fractional	PDEs103	or	stochastic	
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Here	{(xi,	ti)}	and	{(xj,	tj)}	are	two	sets	of	points	sampled	at	the	initial/boundary	locations	
and	in	the	entire	domain,	respectively,	and	ui	are	values	of	u	at	(xi,	ti);	wdata	and	wPDE	are	the	
weights	used	to	balance	the	interplay	between	the	two	loss	terms.	These	weights	can		
be	user-	defined	or	tuned	automatically,	and	play	an	important	role	in	improving	the	
trainability	of	PINNs76,173.
The	network	is	trained	by	minimizing	the	loss	via	gradient-	based	optimizers,	such	as	

Adam196	and	L-	BFGS206,	until	the	loss	is	smaller	than	a	threshold	ε.	The	PINN	algorithm		
is	shown	below,	and	more	details	about	PINNs	and	a	recommended	Python	library	
DeepXDE	can	be	found	in	REF.154.

Algorithm 1: The PINN algorithm.
Construct	a	neural	network	(NN)	u(x,	t;	θ)	with	θ	the	set	of	trainable	weights	w	and	biases	b,	
and	σ	denotes	a	nonlinear	activation	function.	Specify	the	measurement	data	{xi,	ti,	ui}		
for	u	and	the	residual	points	{xj,	tj}	for	the	PDE.	Specify	the	loss	L	in	Eq.	(3)	by	summing		
the	weighted	losses	of	the	data	and	PDE.	Train	the	NN	to	find	the	best	parameters	θ*		
by	minimizing	the	loss	L.
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“natural” expectation: you want neural networks approximating 𝑢(𝑥, 𝑡)
 respecting underlying equation and boundary conditions, but...
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FIG. 1. Schematic of IMSRG-Net. A fully connected neural network is used to generate approximated Magnus operators !NN(s) and their
derivatives ηNN(s) are used as indicators of how well a neural network model respects the underlying IMSRG flow equation. Both the loss
terms on ! and η are back-propagated to train the network. The bar on !NN indicates that the network output in actual calculations is scaled
residual of the Magnus operator. See Sec. III C for more details.

Now the loss function of IMSRG-Net is defined as the sum
of the mean-squared errors (MSEs) for !NN and ηNN:

L = L! + ληLη, (10)

L! =
∑

i∈D

1
ND

[!(si ) − !NN(si )]2, (11)

Lη =
∑

i∈D

1
ND

[η(si ) − ηNN(si )]2, (12)

where D is the training data set and ND is the number of data.
The parameter λη is introduced to balance the two terms. The
typical size of Lη can be different from that of L!. From our
investigations, a rule of thumb to make training stable is to set
λη = 101–103, which makes the contribution of Eq. (12) com-
parable to Eq. (11). I use a fixed value, λη = 102, throughout
this work.

Under this design of the loss functions, IMSRG-Net can
be regarded as a special case of physics-informed neural
networks (PINNs) [25,26]. Each component of η contains in-
formation regarding the channels to be decoupled through the
IMSRG flow. Such physics information is encoded through
the Lη term, serving as a soft constraint that guides the
network to learn the underlying principle—the IMSRG flow
equation.

B. Hyperparameters

I explored various combinations of hyperparameters for
neural network models: (i) optimizers: Stochastic gradient

TABLE I. The architecture of IMSRG-Net. The size of output
layer is given by dimension of the vectorized operator, which de-
pends on emax.

Layer Activation Number of nodes Bias term

hl-0 Tanh 48 Yes
hl-1 Softplus 48 Yes
hl-2 Softplus 16 Yes
Output Identity Dim. ! vector No

descent (SGD), Adam [33], AdamW [34], L-BFGS [35];
(ii) activation functions: Tanh, softplus, ReLU, Leaky ReLU,
ELU; (iii) number of hidden layers: 1, 2, 3, 4; (iv) number
of nodes in hidden layers: 4, 8, 16, 32, 64; (v) parameters for
optimizers (learning rate, weight decay, momentum, etc.).

Naturally, these trials do not cover all the possible com-
binations of hyperparameters. Thus, it is important to remark
that the architecture and hyperparameters adopted in this work
represent only one of the viable choices that can achieve the
desired accuracy for the target problems.

Regarding activation functions, one of the popular choices
today is the rectified linear unit (ReLU), particularly in deep
neural network models, e.g., for image recognition tasks, due
to its computational efficiency and ability to mitigate the van-
ishing gradient problem. However, in this work, I found that
smooth activation functions perform better than ReLU. This
may be attributed to the fact that !(s) is a smooth function of
s. For this reason, I employed the hyperbolic tangent (Tanh)
function for the first hidden layer. The Softplus function,
employed in the other hidden layers, achieves both smooth
outputs and avoiding the vanishing gradient problem.

I employed the AdamW optimizer [34] to train the
network, updating the model parameters through the back-
propagation based on the loss function (10). Empirically, I
observed that the model exhibits superior extrapolation per-
formance when using AdamW compared with the Adam
optimizer with the same hyperparameters. This may originate
from the fact that the weight decay term in AdamW prevents
the overfitting. During each epoch, I did not use the entire
dataset at once, but rather used a subset of the training data.
This approach, known as mini-batch learning, is a common
technique to accelerate the learning process and to prevent
overfitting. Specifically, I set the batch size equal to the num-
ber of data points, which is also referred to as online learning.
By combining weight decay in AdamW and mini-batch learn-
ing (online learning), the extrapolation is achieved without
sacrificing generalization ability.

The number of nodes in the hidden layers is fixed to
48 for upstream layers and 16 for the downstream layer.
While the former one is almost irrelevant to the generalization
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derivatives ηNN(s) are used as indicators of how well a neural network model respects the underlying IMSRG flow equation. Both the loss
terms on ! and η are back-propagated to train the network. The bar on !NN indicates that the network output in actual calculations is scaled
residual of the Magnus operator. See Sec. III C for more details.
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where D is the training data set and ND is the number of data.
The parameter λη is introduced to balance the two terms. The
typical size of Lη can be different from that of L!. From our
investigations, a rule of thumb to make training stable is to set
λη = 101–103, which makes the contribution of Eq. (12) com-
parable to Eq. (11). I use a fixed value, λη = 102, throughout
this work.

Under this design of the loss functions, IMSRG-Net can
be regarded as a special case of physics-informed neural
networks (PINNs) [25,26]. Each component of η contains in-
formation regarding the channels to be decoupled through the
IMSRG flow. Such physics information is encoded through
the Lη term, serving as a soft constraint that guides the
network to learn the underlying principle—the IMSRG flow
equation.

B. Hyperparameters

I explored various combinations of hyperparameters for
neural network models: (i) optimizers: Stochastic gradient
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descent (SGD), Adam [33], AdamW [34], L-BFGS [35];
(ii) activation functions: Tanh, softplus, ReLU, Leaky ReLU,
ELU; (iii) number of hidden layers: 1, 2, 3, 4; (iv) number
of nodes in hidden layers: 4, 8, 16, 32, 64; (v) parameters for
optimizers (learning rate, weight decay, momentum, etc.).

Naturally, these trials do not cover all the possible com-
binations of hyperparameters. Thus, it is important to remark
that the architecture and hyperparameters adopted in this work
represent only one of the viable choices that can achieve the
desired accuracy for the target problems.

Regarding activation functions, one of the popular choices
today is the rectified linear unit (ReLU), particularly in deep
neural network models, e.g., for image recognition tasks, due
to its computational efficiency and ability to mitigate the van-
ishing gradient problem. However, in this work, I found that
smooth activation functions perform better than ReLU. This
may be attributed to the fact that !(s) is a smooth function of
s. For this reason, I employed the hyperbolic tangent (Tanh)
function for the first hidden layer. The Softplus function,
employed in the other hidden layers, achieves both smooth
outputs and avoiding the vanishing gradient problem.

I employed the AdamW optimizer [34] to train the
network, updating the model parameters through the back-
propagation based on the loss function (10). Empirically, I
observed that the model exhibits superior extrapolation per-
formance when using AdamW compared with the Adam
optimizer with the same hyperparameters. This may originate
from the fact that the weight decay term in AdamW prevents
the overfitting. During each epoch, I did not use the entire
dataset at once, but rather used a subset of the training data.
This approach, known as mini-batch learning, is a common
technique to accelerate the learning process and to prevent
overfitting. Specifically, I set the batch size equal to the num-
ber of data points, which is also referred to as online learning.
By combining weight decay in AdamW and mini-batch learn-
ing (online learning), the extrapolation is achieved without
sacrificing generalization ability.

The number of nodes in the hidden layers is fixed to
48 for upstream layers and 16 for the downstream layer.
While the former one is almost irrelevant to the generalization

044303-3

λη = 100 

SOTA YOSHIDA PHYSICAL REVIEW C 108, 044303 (2023)

II. METHODOLOGY

Here, let us briefly review the basics of the in-medium
similarity renormalization group (IMSRG) method. In IM-
SRG methods, one starts from a normal-ordered Hamiltonian
H (s = 0) on a reference state and then performs the uni-
tary transformation U (s) to decouple particle-hole excitations
from the reference state

H (s) = U (s)H (0)U †(s), (1)

where s is the flow parameter. This gives the following
IMSRG-flow equation:

dH (s)
ds

= [η(s), H (s)], (2)

η(s) ≡ dU (s)
ds

U †(s) = −η†(s). (3)

In the last decade, significant progress has been made in
solving the IMSRG flow equation employing the Magnus ex-
pansion [30]. Within the Magnus formulation of the IMSRG,
the unitary transformation in Eq. (1) is explicitly evaluated by

U (s) = e"(s), (4)

with the anti-Hermitian Magnus operator "(s). By doing this,
one can write down the transformations of any operators O(s)
including the Hamiltonian H (s) as

O(s) = e"(s)O(0)e−"(s). (5)

The flow equation (2) is now translated into the ordinary
differential equation for "(s) and the adjoint of η(s)

d"

ds
=

∞∑

k=0

Bk

k!
ad (k)

" (η), (6)

ad (k)
" (η) =

[
", ad (k−1)

" (η)
]
, (7)

ad (0)
" (η) = η, (8)

where the explicit dependence of " and η on the flow pa-
rameter s is omitted, and Bk is the Bernoulli number. One
can evaluate evolved operators, Eq. (5), through the Baker-
Campbell-Hausdorff (BCH) formula.

Throughout this work, I employ the so-called IMSRG(2)
truncation, where all operators are truncated up to the normal-
ordered two-body (NO2B) level. Let us restrict ourselves to
consider the IMSRG with a single spherical reference state
and to use the so-called arctangent generator for η(s). The
interested readers are referred to Refs. [4,5,31] for additional
information on extensions of the IMSRG method, such as
different basis states, generator choices, higher-order contri-
butions, and more.

In any solvers, the IMSRG flow is discretized using small
finite step size ds, which is usually influential on the final
results and thereby chosen adaptively. Utilizing the Magnus
formulation of IMSRG, one can expect the results are insen-
sitive to the choice of the step size [30]. I fixed the step size to
ds = 0.25 in this work.

As a practical approach, it is common to divide IMSRG
flows into multisteps by monitoring the norms of "(s) to pre-
vent divergence and large computational time for evaluating

deeply nested commutators. In other words, the transformed
Hamiltonian is used as a reference point when the norm of
"(s) exceeds a certain tolerance. At this point, the IMSRG
flow is restarted from the pivot Hamiltonian. However, this
partitioning introduces additional dependencies of the final
results on the chosen tolerance. This is undesirable for the
current purpose because it obfuscates the comparison between
exact IMSRG results and their approximations using the pro-
posed method. The issue is that the necessary number of such
partitionings or splittings in exact IMSRG calculations cannot
be predetermined. To circumvent this and to regard Magnus
operators as smooth functions merely on the flow parameter
s, I do not use such a multistep partitioning of the Magnus
operators in this work. The only exception appears in the va-
lence space problem (Sec. IV B), where one adopts a two-step
process: First, the particle-hole decoupling, followed by the
valence space decoupling for deriving effective interactions
on a model space. For each step, any partitioning during the
IMSRG flow is not used.

III. IMSRG-NET

Here, I describe the design of the neural network archi-
tecture and the training strategy for the proposed model,
IMSRG-Net, and its computational cost.

A. Design of IMSRG-Net: Architecture and loss function

As shown in Fig. 1, the network architecture of IMSRG-
Net is simple. The whole layers are the so-called fully
connected layers (also referred to as Affine layers), which
consist of the input layer, three hidden layers, and the out-
put layer. The network is regarded as a function to give an
approximation of the Magnus operators "NN(s) for larger
values of s region giving converged results. The objective of
the network is to predict not observables, but the Magnus
operators. Hence, once the network is trained to predict "(s)
accurately, it is guaranteed that the network reproduces the
IMSRG results for any observables.

As summarized in Table I, the number of hidden layers is
three, and the number of nodes for each hidden layer is 48, 48,
and 16 from the input side to the output side, respectively. The
adopted activation functions are the hyperbolic tangent for
the first hidden layer and the softplus [32] for the remaining
hidden layers.

To design the loss function to be minimized, let us define
the following quantity:

ηNN(s) = d"NN(s)
ds

, (9)

where the superscript NN represents the values obtained
through the neural network model. It should be noted that the
above relation is an approximation in terms of the Magnus
formulation of the IMSRG, taking the leading term of Eq. (6).
This approximation is based on the fact that the derivatives
of "NN can be evaluated easily and efficiently by automatic
differentiation or numerical differentiation. Here I used the
latter method, which is faster than the former one in our model
having a large number of nodes in the output layer.
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