

Vittorio Somà

CEA Paris-Saclay, France

cert Progress in Many-Body Theories

The nuclear *ab initio* endeavour

A systematic approach to describe nuclei

1) Exact solutions have factorial or exponential scaling \rightarrow limited to light nuclei 2) Correlation-expansion methods to achieve polynomial scaling \rightarrow CPU-scalable to heavy masses • Hamiltonian partitioning $H = H_0 + H_1$ • Reference state $H_0 |\Theta_k^{(0)}\rangle = E_k^{(0)} |\Theta_k^{(0)}\rangle$ • Wave-operator expansion $|\Psi_k^{\sigma}\rangle = \Omega_k |\Theta_k^{(0)}\rangle$

		2N Force	3N Foi
	${f LO}\ (Q/\Lambda_\chi)^0$		
rom chiral effective field theory			
gy limit of QCD	\mathbf{NLO}		
and pions as d.o.f.	$(Q/\Lambda_{\chi})^2$		
unting \rightarrow expansion of H			
	NNLO $(Q/\Lambda_{\chi})^3$		
of symmetries			
$R(\theta)] = 0$	${f N^3 LO} (Q/\Lambda_\chi)^4$		

uveaused nt Berger

Un notveau Haut Commissaire place Vincent Berger

1) Incorporate **static** correlations into reference state

2) Account for **dynamical** correlations via *ph* excitation

→ Symmetries must be eventually **restored seront** mmissaire (placé auprès du 1^{er} ministre) depuis Sept. 2023

Sufficient to break

Outline

1) **Perturbative** calculations (proof that deformation is mandatory)

2) Strategy #1: expand, then project

Strategy #2: project, then expand

Study on the necessity of deformation

• **Physical case**:

Singly open-shell calcium chain (Z=20) **Doubly open-shell** chromium chain (Z=24) body approaches:

Observables:

Total binding energies E(N,Z)Wo-neutron separation energies Two-neutron shell gaps • Hamiltonian: empirically optimal (to disentangle H & many-body expansion) \rightarrow EM 1.8/2.0 [Hebeler *et al*. 2011]

• **Goal**: prove that deformation is mandatory for describing doubly open-shell nuclei at a polynomial cost

U(1)-breaking & SU(2)-conserving / -breaking many-body perturbation theory (**sBMBPT** / **dBMBPT**)

- $S_{2n}(N,Z) \equiv E(N-2,Z) E(N,Z)$ $\Delta_{2n}(N,Z) \equiv S_{2n}(N,Z) - S_{2n}(N+2,Z)$

[Scalesi *et al*. 2024]

[Scalesi *et al*. 2024]

Spherical mean field

- Underbinding
- Wrong curvature

[Scalesi *et al*. 2024]

Spherical mean field

- Underbinding
- Wrong curvature

Low-order dynamical correlations

- Correct binding
- Improved curvature
 - → Low-order sufficient

-

[Scalesi *et al*. 2024]

[Scalesi *et al*. 2024]

Spherical mean field

• Defects even more pronounced

[Scalesi *et al*. 2024]

Spherical mean field

• Defects even more pronounced

Low-order dynamical correlations

- Improved curvature
- Wrong shell gaps

5

[Scalesi *et al*. 2024]

Spherical mean field

• Defects even more pronounced

Low-order dynamical correlations

- Improved curvature
- Wrong shell gaps

Non-polynomial (diagonalisation)

- Correct E₀, S_{2n} and gaps
 - → At least high orders needed

[Scalesi *et al*. 2024]

[Scalesi *et al*. 2024]

Deformed mean field

- Underbinding
- Wrong curvature

Low-order dynamical correlations

- Binding energy now fine
- Improved curvature

→ Low-order sufficient

2

[Scalesi *et al*. 2024]

[Scalesi *et al*. 2024]

Deformed mean field

- \circ Underbinding
- Improved curvature

[Scalesi *et al*. 2024]

Doubly open-shell

- **Deformed mean field**
- \circ Underbinding
- Improved curvature

Low-order dynamical correlations

- Correct binding
- Correct curvature
- Improved gaps

5

[Scalesi *et al*. 2024]

Doubly open-shell

- **Deformed mean field**
- \circ Underbinding
- Improved curvature

Low-order dynamical correlations

- Correct binding
- Correct curvature
- \circ Improved gaps

Non-polynomial (diagonalisation)

- \circ Correct $E_0,\,S_{2n}$ and gaps
 - → Low-order sufficient
 - → Deformation necessary

5

)

1

placet by the one-poly grant being half
$$A_{int}^{int}$$
 and the placet by the one-poly grant being half A_{int}^{int} and the placet by the one-particle in Eq. (2.15) public placets by defining **Gorkov self-consistent Green's functions** , **g** where single particle and the placet by and the placet by the particle and the placet by the

Exp. NNLO_{sat} NN+3N(lnl)

[Soma *et al.*, 2020]

Deformed self-consistent Green's functions

Extension of SCGF to **SU(2)-breaking** framework

• Deformed HF reference state

[Scalesi *et al*. in preparation]

(2) truncation

• Trend consistent with CC results

Deformed self-consistent Green's functions

Extension of SCGF to **SU(2)-breaking** framework

• Deformed HF reference state

(2) truncation

[Scalesi *et al*. in preparation]

ens the possibility of targeting **odd systems**

- Trend consistent with CC results
- Successful benchmark in odd-even isotopes
- Preliminary test in odd-Z chain promising
 - → **First odd-odd calculations** with expansion methods!
- Absence of symmetry restoration problematic

PGCM

Alternative s

• Constructio

acu

Variational⁻

Actus CE

Doubly oper

- Approximate / truncated methods capture corre
- Open-shell nuclei are (near-)degenerate with re

closed-shell

• Solution: multi-determinantal or **symmetry-br** • Symmetry-breaking solution allows to lift th

> Pairing correlations Superfluidity Breaking of U(1)

Singly open-shells

PGCM

PGCM & PGCM-PT

Conclusions and perspectives

Symmetry breaking

- - perfluidity [U(1)-breaking] sufficient if one targets singly open-shell systems

metry restoration

lated for MBPT and CC [Duguet 2015, Duguet & Signoracci 2017, Qiu et al., 2017, ...] & recently applied [Hagen et al., 2022, ...] ormulated for SCGF

umerical cost

• Symmetry breaking (and restoration) come with **extra cost** Larger number of basis states needed for deformed calculations ($n \sim 2000$ compared to $n \sim 200$ in spherical) \rightarrow PGCM: remains mean-field-like, n^4 , but acquires large prefactor (~hundreds) GCM-PT: second order already scales as n^8 (compared to n^5 for standard MBPT) chniques needed to reduce costs \rightarrow Natural orbitals, importance truncation, tensor factorisation,

• Deformation [SU(2) breaking] mandatory for describing (doubly open-shell) nuclei at polynomial cost

Acknowledgments

• Recent developments

Paris-Saclay

Cadarache

M. Frosini

Bruyères-les-Châtel

J.-P. Ebran

C. Barbieri

T. Duguet

P. Navrátil

B. Bally, T. Duguet, A. Porro, **A. Scalesi**

KU LEUVEN

P. Demol

