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Ab initio 2024

Data taken from:
M. Wang et al., Chin. Phys. C 45, 030003 (2021)
S. Goriely et al., EPJA 52, 202 (2016)
H. Hergert (private communications)2
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○ Energy density functionals

Nuclear structure approaches

○ Empirical shell model
○ Ab initio

○ …

Heaviest closed-shell

Heaviest singly open-shell

Heaviest doubly open-shell

➝ See T. Miyagi’s talk
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The nuclear ab initio endeavour
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A systematic approach to describe nuclei

1) Exact solutions have factorial or exponential scaling ➝  limited to light nuclei

2) Correlation-expansion methods to achieve polynomial scaling ➝  CPU-scalable to heavy masses

Hamiltonian from chiral effective field theory
○ Low-energy limit of QCD
○ Nucleons and pions as d.o.f.
○ Power counting ➝ expansion of H

Set of symmetries
Set of quantum numbers
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○ Hamiltonian partitioning

○ Reference state
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○ Wave-operator expansion
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scaling  nα           with α > 4

MBPT, CC, SCGF, IM-SRG, …
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Closed- and open-shells, symmetry breaking
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Closed- vs open-shell, symmetry breaking

5% 95%

○ Reference state varies with Z & N
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Closed- vs open-shell, symmetry breaking

5% 95%

Closed-shell

Open-shell

Weakly correlated

Strongly correlated

ph expansion well defined

ph expansion breaks down

SU(2) Deformation

U(1)N x U(1)Z Superfluidity
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Closed- vs open-shell, symmetry breaking

5% 95%

○ Exploit symmetry breaking to lift ph degeneracy

Singly open-shell
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Closed- vs open-shell, symmetry breaking

EΘ0

|q|

order parameter Doubly open-shell

Sufficient to break

Necessary to break

1) Incorporate static correlations into reference state

⦿ Approximate/truncated methods capture correlations via an expansion in ph excitations

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations

open-shellclosed-shell

i j

a b

i j a b

⦿ Solution: multi-determinantal or symmetry-breaking reference state 

Doubly open-shell nuclei

Pairing correlations
↕ 

Superfluidity
↕

Breaking of U(1)

Quadrupole correlations
↕

Deformation
↕

Breaking of SU(2)

○ Symmetry-breaking solution allows to lift the degeneracy

Singly open-shells Doubly open-shells

To be developed and implementedDeveloped and implemented

⦿ Approximate/truncated methods capture correlations via an expansion in ph excitations

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations

open-shellclosed-shell

i j

a b

i j a b

Approximate ab initio methods

i j

a b 2) Account for dynamical correlations via ph excitation

➝ Symmetries must be eventually restored

Reference state
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Outline

1) Perturbative calculations (proof that deformation is mandatory)

2) Strategy #1: expand, then project

3) Strategy #2: project, then expand



6

Disposition : Titre et contenu

Actus CEA

q Un nouveau Haut Commissaire (placé auprès du 1er ministre) depuis Sept. 2023 
Vincent Berger

q Une nouvelle directrice de la recherche fondamentale depuis Nov. 2023  
Anne-Isabelle Etienvre

q Deux agences de programmes seront coordonnées par le CEA :
     Energies décarbonées et Composants système et infrastructures du numérique

q Recherche à risque : enveloppe de crédits additionnels pour la recherche 
amont/exploratoire sans garanti de succès. Annonces à venir en février 2024.

q Conseil Scientifique du CEA en 2024 : diffusion neutronique avec focalisation 
sur le projet ICONE

4

Study on the necessity of deformation

○ Goal: prove that deformation is mandatory for describing doubly open-shell nuclei at a polynomial cost

○ Physical case:

➝ Singly open-shell calcium chain (Z=20)

➝ Doubly open-shell chromium chain (Z=24)

S2n(N, Z) ≡ E(N − 2, Z) − E(N, Z)

Δ2n(N, Z) ≡ S2n(N, Z) − S2n(N + 2,Z)

○ Observables:

➝ Total binding energies

➝ Two-neutron separation energies

➝ Two-neutron shell gaps

E(N, Z)

○ Hamiltonian: empirically optimal (to disentangle H & many-body expansion)

➝ EM 1.8/2.0 [Hebeler et al. 2011]

○ Many-body approaches:

➝ U(1)-breaking & SU(2)-conserving / -breaking many-body perturbation theory (sBMBPT / dBMBPT)
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SU(2)-conserving approach

[Scalesi et al. 2024]

Singly open-shell
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SU(2)-conserving approach

[Scalesi et al. 2024]

○ Underbinding
Spherical mean field

○ Wrong curvature

Singly open-shell
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SU(2)-conserving approach

○ Underbinding
Spherical mean field

○ Correct binding
Low-order dynamical correlations

○ Improved curvature

Singly open-shell

○ Wrong curvature

➝  Low-order sufficient

[Scalesi et al. 2024]
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SU(2)-conserving approach

[Scalesi et al. 2024]

Doubly open-shell
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SU(2)-conserving approach

[Scalesi et al. 2024]

○ Defects even more pronounced
Spherical mean field

Doubly open-shell
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○ Defects even more pronounced
Spherical mean field

○ Improved curvature
Low-order dynamical correlations

○ Wrong shell gaps

Doubly open-shell
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SU(2)-conserving approach

○ Defects even more pronounced
Spherical mean field

➝  At least high orders needed

○ Improved curvature
Low-order dynamical correlations

○ Correct E0, S2n and gaps
Non-polynomial (diagonalisation)

○ Wrong shell gaps

[Scalesi et al. 2024]

Doubly open-shell
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SU(2)-breaking approach

[Scalesi et al. 2024]

Singly open-shell
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SU(2)-breaking approach

○ Underbinding
Deformed mean field

○ Binding energy now fine
Low-order dynamical correlations

○ Improved curvature

○ Wrong curvature

➝  Low-order sufficient

[Scalesi et al. 2024]

Singly open-shell
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SU(2)-breaking approach

[Scalesi et al. 2024]

Doubly open-shell
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SU(2)-breaking approach

[Scalesi et al. 2024]

○ Underbinding
Deformed mean field

○ Improved curvature

Doubly open-shell
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SU(2)-breaking approach

[Scalesi et al. 2024]

○ Underbinding
Deformed mean field

○ Correct binding
Low-order dynamical correlations

○ Correct curvature

○ Improved curvature

○ Improved gaps

Doubly open-shell
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SU(2)-breaking approach

○ Underbinding
Deformed mean field

➝  Low-order sufficient

○ Correct binding
Low-order dynamical correlations

○ Correct E0, S2n and gaps
Non-polynomial (diagonalisation)

○ Correct curvature

Doubly open-shell

○ Improved curvature

○ Improved gaps

➝  Deformation necessary[Scalesi et al. 2024]
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Superfluid self-consistent Green’s functions

Gorkov self-consistent Green’s functions
Chapter 2 Gorkov formalism

With these at hand, one defines four Gorkov one-body propagators with respect to the
ground state of Ω as follows [123]

i g11
αβ(t − t′) ≡ 〈Ψ0| T [aα(t)a†

β(t′)] |Ψ0〉 , (2.14a)
i g12

αβ(t − t′) ≡ 〈Ψ0| T [aα(t)āβ(t′)] |Ψ0〉 , (2.14b)
i g21

αβ(t − t′) ≡ 〈Ψ0| T [ā†
α(t)a†

β(t′)] |Ψ0〉 , (2.14c)
i g22

αβ(t − t′) ≡ 〈Ψ0| T [ā†
α(t)āβ(t′)] |Ψ0〉 , (2.14d)

where T [· · · ] denotes the usual time ordering operator and the superscripts ‘1’ (‘2’) are
the Nambu indices referring to creation and annihilation of normal (anomalous) single
particle excitations.

Nambu’s matrix formalism
Gorkov’s propagators can be conveniently grouped into a matrix representation, intro-
duced by Nambu [124]. First one defines the two-component vector9

Aα(t) ≡
(

aα(t)
ā†

α(t)

)

, (2.15a)

and its self adjoint
A†

α(t) =
(

a†
α(t) āα(t)

)
, (2.15b)

denoting generalized annihilation and creation operators. Their components fulfil the
anti-commutation relations

{
Ag1

α (t), Ag2 †
β (t)

}
= δg1g2 δαβ , (2.16)

where the extra label labels the rows (columns) of the annihilation (creation) vector
operator. One can then write the four propagators (2.14) in the matrix form

i gαβ(t − t′) ≡ 〈Ψ0|T
{
Aα(t)A†

β(t′)
}

|Ψ0〉

= i




g11

αβ(t − t′) g12
αβ(t − t′)

g21
αβ(t − t′) g22

αβ(t − t′)



 , (2.17)

where the time ordering operator acts separately on each element of Nambu’s matrix AA†.
In general, any object Og1g2

ab defined in Gorkov’s space can be put into such a matrix form

Oαβ(t, t′) ≡




O11

αβ(t, t′) O12
αβ(t, t′)

O21
αβ(t, t′) O22

αβ(t, t′)



 , (2.18)

with g1 and g2 labelling respectively the rows and the columns of the matrix.
9In Chapter 1 bold quantities were introduced to denote matrices in H1. Here they are instead used to

represent matrices in the 2 × 2 Nambu space. In Chapter 3 they will be used to group together both
notations.
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2.3 Gorkov equations

its grand-canonical version as

Ω = T + U − µZ − µN︸ ︷︷ ︸
≡ ΩU

+ V − U︸ ︷︷ ︸
≡ ΩI

, (2.31)

where now U represents an explicitly symmetry-breaking auxiliary one-body potential. The
latter can be written as

U =
∑

αβ

[
uαβ a†

αaβ + 1
2uan.

αβ a†
αa†

β + 1
2(uan.

αβ )∗ aαaβ

]
, (2.32)

where uαβ = u∗
βα and uan.

αβ = −uan.
βα without loss of generality. As a result, both the

unperturbed Hamiltonian ΩU and the perturbation ΩI are symmetry-breaking operators.
The perturbative expansion of Gorkov propagators is then devised following the stan-

dard approach of defining an unperturbed propagator, g0(t − t′), according to defini-
tions (2.14) but with operators defined in interaction picture (cf. Eq. (1.8)), where now
H0 is replaced by the one-body grand potential ΩU . After Fourier transform to frequency
domain, one finds

g0(ω) = [ωI − ΩU ]−1 , (2.33)

where single-particle and Nambu indices are implicit and the matrix inversion is performed
with respect to both. One then exploits the interaction picture to construct a perturbative
expansion of the full propagator, Eq. (2.17), that can be represented as a series of Feynman
diagrams in powers of the perturbation ΩI [57]. Doing so, the standard Dyson equation
for the exact propagator is generalised to a set of coupled Gorkov equations for the four
propagators (2.20). Using Nambu’s matrix notation, the equations read as

gαβ(ω) = g0 αβ(ω) +
∑

γ δ

g0 αγ(ω) Σ%
γδ(ω) gγβ(ω) , (2.34)

where the four self-energies

Σ%
αβ(ω) ≡




Σ% 11

αβ (ω) Σ% 12
αβ (ω)

Σ% 21
αβ (ω) Σ% 22

αβ (ω)



 (2.35)

include all possible one-particle irreducible diagrams stripped of their external legs. As for
the Dyson case, the remaining reducible diagrams are then generated in a non-perturbative
way through the all-orders resummation generated by Eq. (2.34).

In standard perturbation theory, a given approximation to Σ%(ω) is a functional of the
unperturbed propagators g(0)(ω) and hence depends directly on the choice of the reference
state associated with ΩU . In SCGF theory, the series of diagrams to be resummed is
further restricted to skeleton diagrams displaying no self-energy insertion, provided that
all propagator lines are replaced by the interacting propagator g(ω). Since the full Dyson-
Gorkov series is included in such a propagator, the SCGF procedure not only reduces the
number of Feynman diagrams that need to be dealt with but it implicitly accounts for
higher-order terms that are beyond the perturbative truncation chosen for the self-energy.
The self-energy becomes a functional of the interacting propagator, Σ%[g; T, V ] and no
longer depends on the unperturbed state. The price to pay for such improvements is that
diagrams expressed in terms of g(ω) are more demanding to deal with, due to the rich

25

2.3 Gorkov equations

its grand-canonical version as

Ω = T + U − µZ − µN︸ ︷︷ ︸
≡ ΩU

+ V − U︸ ︷︷ ︸
≡ ΩI

, (2.31)

where now U represents an explicitly symmetry-breaking auxiliary one-body potential. The
latter can be written as

U =
∑

αβ

[
uαβ a†

αaβ + 1
2uan.

αβ a†
αa†

β + 1
2(uan.

αβ )∗ aαaβ

]
, (2.32)

where uαβ = u∗
βα and uan.

αβ = −uan.
βα without loss of generality. As a result, both the

unperturbed Hamiltonian ΩU and the perturbation ΩI are symmetry-breaking operators.
The perturbative expansion of Gorkov propagators is then devised following the stan-

dard approach of defining an unperturbed propagator, g0(t − t′), according to defini-
tions (2.14) but with operators defined in interaction picture (cf. Eq. (1.8)), where now
H0 is replaced by the one-body grand potential ΩU . After Fourier transform to frequency
domain, one finds

g0(ω) = [ωI − ΩU ]−1 , (2.33)

where single-particle and Nambu indices are implicit and the matrix inversion is performed
with respect to both. One then exploits the interaction picture to construct a perturbative
expansion of the full propagator, Eq. (2.17), that can be represented as a series of Feynman
diagrams in powers of the perturbation ΩI [57]. Doing so, the standard Dyson equation
for the exact propagator is generalised to a set of coupled Gorkov equations for the four
propagators (2.20). Using Nambu’s matrix notation, the equations read as

gαβ(ω) = g0 αβ(ω) +
∑

γ δ

g0 αγ(ω) Σ%
γδ(ω) gγβ(ω) , (2.34)

where the four self-energies

Σ%
αβ(ω) ≡




Σ% 11

αβ (ω) Σ% 12
αβ (ω)

Σ% 21
αβ (ω) Σ% 22

αβ (ω)



 (2.35)

include all possible one-particle irreducible diagrams stripped of their external legs. As for
the Dyson case, the remaining reducible diagrams are then generated in a non-perturbative
way through the all-orders resummation generated by Eq. (2.34).

In standard perturbation theory, a given approximation to Σ%(ω) is a functional of the
unperturbed propagators g(0)(ω) and hence depends directly on the choice of the reference
state associated with ΩU . In SCGF theory, the series of diagrams to be resummed is
further restricted to skeleton diagrams displaying no self-energy insertion, provided that
all propagator lines are replaced by the interacting propagator g(ω). Since the full Dyson-
Gorkov series is included in such a propagator, the SCGF procedure not only reduces the
number of Feynman diagrams that need to be dealt with but it implicitly accounts for
higher-order terms that are beyond the perturbative truncation chosen for the self-energy.
The self-energy becomes a functional of the interacting propagator, Σ%[g; T, V ] and no
longer depends on the unperturbed state. The price to pay for such improvements is that
diagrams expressed in terms of g(ω) are more demanding to deal with, due to the rich

25

[Gorkov 1958]

Normal & anomalous propagators

Nambu notation

Generalised Dyson equation

2.3 Gorkov equations

its grand-canonical version as

Ω = T + U − µZ − µN︸ ︷︷ ︸
≡ ΩU

+ V − U︸ ︷︷ ︸
≡ ΩI

, (2.31)

where now U represents an explicitly symmetry-breaking auxiliary one-body potential. The
latter can be written as

U =
∑

αβ

[
uαβ a†

αaβ + 1
2uan.

αβ a†
αa†

β + 1
2(uan.

αβ )∗ aαaβ

]
, (2.32)

where uαβ = u∗
βα and uan.

αβ = −uan.
βα without loss of generality. As a result, both the

unperturbed Hamiltonian ΩU and the perturbation ΩI are symmetry-breaking operators.
The perturbative expansion of Gorkov propagators is then devised following the stan-

dard approach of defining an unperturbed propagator, g0(t − t′), according to defini-
tions (2.14) but with operators defined in interaction picture (cf. Eq. (1.8)), where now
H0 is replaced by the one-body grand potential ΩU . After Fourier transform to frequency
domain, one finds

g0(ω) = [ωI − ΩU ]−1 , (2.33)

where single-particle and Nambu indices are implicit and the matrix inversion is performed
with respect to both. One then exploits the interaction picture to construct a perturbative
expansion of the full propagator, Eq. (2.17), that can be represented as a series of Feynman
diagrams in powers of the perturbation ΩI [57]. Doing so, the standard Dyson equation
for the exact propagator is generalised to a set of coupled Gorkov equations for the four
propagators (2.20). Using Nambu’s matrix notation, the equations read as

gαβ(ω) = g0 αβ(ω) +
∑

γ δ

g0 αγ(ω) Σ%
γδ(ω) gγβ(ω) , (2.34)

where the four self-energies

Σ%
αβ(ω) ≡




Σ% 11

αβ (ω) Σ% 12
αβ (ω)

Σ% 21
αβ (ω) Σ% 22

αβ (ω)



 (2.35)

include all possible one-particle irreducible diagrams stripped of their external legs. As for
the Dyson case, the remaining reducible diagrams are then generated in a non-perturbative
way through the all-orders resummation generated by Eq. (2.34).

In standard perturbation theory, a given approximation to Σ%(ω) is a functional of the
unperturbed propagators g(0)(ω) and hence depends directly on the choice of the reference
state associated with ΩU . In SCGF theory, the series of diagrams to be resummed is
further restricted to skeleton diagrams displaying no self-energy insertion, provided that
all propagator lines are replaced by the interacting propagator g(ω). Since the full Dyson-
Gorkov series is included in such a propagator, the SCGF procedure not only reduces the
number of Feynman diagrams that need to be dealt with but it implicitly accounts for
higher-order terms that are beyond the perturbative truncation chosen for the self-energy.
The self-energy becomes a functional of the interacting propagator, Σ%[g; T, V ] and no
longer depends on the unperturbed state. The price to pay for such improvements is that
diagrams expressed in terms of g(ω) are more demanding to deal with, due to the rich

25

Gorkov equation

2.3 Gorkov equations

its grand-canonical version as

Ω = T + U − µZ − µN︸ ︷︷ ︸
≡ ΩU

+ V − U︸ ︷︷ ︸
≡ ΩI

, (2.31)

where now U represents an explicitly symmetry-breaking auxiliary one-body potential. The
latter can be written as

U =
∑

αβ

[
uαβ a†

αaβ + 1
2uan.

αβ a†
αa†

β + 1
2(uan.

αβ )∗ aαaβ

]
, (2.32)

where uαβ = u∗
βα and uan.

αβ = −uan.
βα without loss of generality. As a result, both the

unperturbed Hamiltonian ΩU and the perturbation ΩI are symmetry-breaking operators.
The perturbative expansion of Gorkov propagators is then devised following the stan-

dard approach of defining an unperturbed propagator, g0(t − t′), according to defini-
tions (2.14) but with operators defined in interaction picture (cf. Eq. (1.8)), where now
H0 is replaced by the one-body grand potential ΩU . After Fourier transform to frequency
domain, one finds

g0(ω) = [ωI − ΩU ]−1 , (2.33)

where single-particle and Nambu indices are implicit and the matrix inversion is performed
with respect to both. One then exploits the interaction picture to construct a perturbative
expansion of the full propagator, Eq. (2.17), that can be represented as a series of Feynman
diagrams in powers of the perturbation ΩI [57]. Doing so, the standard Dyson equation
for the exact propagator is generalised to a set of coupled Gorkov equations for the four
propagators (2.20). Using Nambu’s matrix notation, the equations read as

gαβ(ω) = g0 αβ(ω) +
∑

γ δ

g0 αγ(ω) Σ%
γδ(ω) gγβ(ω) , (2.34)

where the four self-energies

Σ%
αβ(ω) ≡




Σ% 11

αβ (ω) Σ% 12
αβ (ω)

Σ% 21
αβ (ω) Σ% 22

αβ (ω)



 (2.35)

include all possible one-particle irreducible diagrams stripped of their external legs. As for
the Dyson case, the remaining reducible diagrams are then generated in a non-perturbative
way through the all-orders resummation generated by Eq. (2.34).

In standard perturbation theory, a given approximation to Σ%(ω) is a functional of the
unperturbed propagators g(0)(ω) and hence depends directly on the choice of the reference
state associated with ΩU . In SCGF theory, the series of diagrams to be resummed is
further restricted to skeleton diagrams displaying no self-energy insertion, provided that
all propagator lines are replaced by the interacting propagator g(ω). Since the full Dyson-
Gorkov series is included in such a propagator, the SCGF procedure not only reduces the
number of Feynman diagrams that need to be dealt with but it implicitly accounts for
higher-order terms that are beyond the perturbative truncation chosen for the self-energy.
The self-energy becomes a functional of the interacting propagator, Σ%[g; T, V ] and no
longer depends on the unperturbed state. The price to pay for such improvements is that
diagrams expressed in terms of g(ω) are more demanding to deal with, due to the rich

25

Self-energy matrix

Chapter 2 Gorkov formalism

It is useful to introduce a Nambu representation also for the Lehmann form of the
propagators by defining the two-component vectors

Xk†
α ≡ 〈Ψk|A†

α|Ψ0〉 =
(

Uk∗
α Vk∗

α

)
, (2.25a)

Yk
α ≡ 〈Ψk|Aα|Ψ0〉 =

(
V̄k∗

α

Ūk∗
α

)

, (2.25b)

where A and A† have been introduced in Eq. (2.15), which leads to writing

gαβ(ω) =
∑

k





Xk

α Xk†
β

ω − ωk + iη +
Yk

α Yk†
β

ω + ωk − iη




 . (2.26)

Note that vectors (2.25) contain equivalent physics information and are transformed into
each other by

Xk
α =

(
0 -1
1 0

)

Yk
ᾱ

∗
. (2.27)

Once the spectral representation (2.20) is known, it is possible to extract normal and
anomalous one-body density matrices according to

ραβ ≡ 〈Ψ0|c†
βcα|Ψ0〉 = 1

π

∫ 0

−∞
Im g11

αβ(ω) dω =
∑

k

V̄k
α

∗ V̄k
β , (2.28a)

ρ̃αβ ≡ 〈Ψ0|c̄βcα|Ψ0〉 = 1
π

∫ 0

−∞
Im g12

αβ(ω) dω =
∑

k

V̄k
α

∗ Ūk
β . (2.28b)

The expectation value of any one-body operator O is given by

〈Ψ0|O|Ψ0〉 =
∑

αβ

oαβρβα , (2.29)

whereas the Migdal-Galitski-Koltun energy sum rule is generalised to

Ω0 = 1
2π

∫ 0

−∞
dω

∑

αβ

[
tαβ − µδαβ + ωδαβ

]
Im g11

βα(ω) (2.30)

in the case of a Hamiltonian with up to two-particle interactions. Spectral functions,
its variants and its moments are also easily generalised in analogy with their Dyson
counterparts introduced in Sect. 1.5.

2.3 Gorkov equations
Following the discussion of Sect. 2.1, the Gorkov framework aims at devising approx-
imate (and possibly particle-number symmetry breaking) solutions to the many-body
Schrödinger equation (or, more specifically, to the exact one-body propagator). The cru-
cial step to achieve this consists in generalising the splitting of the Hamiltonian10 (1.6) to
10The formalism presented here is limited to a Hamiltonian with two-body forces only. Gorkov equations

with explicit three-body forces (as well as the Gorkov effective interaction formalism) have been
worked out [125] but introduce a substantial amount of technicalities, which is outside the scope of
this manuscript. The procedure through which three-nucleon forces are included in Gorkov SCGF
calculations is outlined in Sect. 3.2.
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where

➪ Generalised Koltun sum rule holds

Gorkov Green’s functions
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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FIG. 3. Second-order anomalous self-energies !21 (2′) (left) and
!21 (2′′) (right). See Fig. 1 for conventions.

expressions, let us introduce useful quantities

Mk1k2k3
a ≡

∑

ijk

V̄akij U k1
i U k2

j V̄k3
k , (69a)

Pk1k2k3
a ≡

∑

ijk

V̄ak̄ij̄ U k1
i Vk2

k Ū k3
j = Mk1k3k2

a , (69b)

Rk1k2k3
a ≡

∑

ijk

V̄ak̄īj Vk1
k U k2

j Ū k3
i = Mk3k2k1

a , (69c)

and

N k1k2k3
a ≡

∑

ijk

V̄akij Vk1
i Vk2

j Ū k3
k , (70a)

Qk1k2k3
a ≡

∑

ijk

V̄ak̄ij̄ Vk1
i U k2

k V̄k3
j = N k1k3k2

a , (70b)

Sk1k2k3
a ≡

∑

ijk

V̄ak̄īj U k1
k Vk2

j V̄k3
i = N k3k2k1

a , (70c)

in terms of which second-order self-energies are expressed
below. Using relations (41) one shows that

M̄k1k2k3
a = ηa Mk1k2k3

ã , (71a)

P̄k1k2k3
a = ηa Pk1k2k3

ã , (71b)

R̄k1k2k3
a = ηa Rk1k2k3

ã , (71c)

and

N̄ k1k2k3
a = −ηa N k1k2k3

ã , (72a)

Q̄k1k2k3
a = −ηa Qk1k2k3

ã , (72b)

S̄k1k2k3
a = −ηa Sk1k2k3

ã . (72c)

Given that P and R can be obtained from M through odd
permutations of indices {k1, k2, k3} and taking into account
the symmetries of interaction matrix elements, one can prove
that such quantities display the properties

∑

k1k2k3

Mk1k2k3
a Mk1k2k3

b

∗ = +
∑

k1k2k3

Pk1k2k3
a Pk1k2k3

b

∗

= +
∑

k1k2k3

Rk1k2k3
a Rk1k2k3

b

∗
, (73a)

and
∑

k1k2k3

Mk1k2k3
a Pk1k2k3

b

∗ = +
∑

k1k2k3

Mk1k2k3
a Rk1k2k3

b

∗

= +
∑

k1k2k3

Pk1k2k3
a Mk1k2k3

b

∗

= −
∑

k1k2k3

Pk1k2k3
a Rk1k2k3

b

∗

= +
∑

k1k2k3

Rk1k2k3
a Mk1k2k3

b

∗

= −
∑

k1k2k3

Rk1k2k3
a Pk1k2k3

b

∗
. (73b)

Similarly, for N , Q, and S one has
∑

k1k2k3

N k1k2k3
a

∗ N k1k2k3
b = +

∑

k1k2k3

Qk1k2k3
a

∗ Qk1k2k3
b

= +
∑

k1k2k3

Sk1k2k3
a

∗ Sk1k2k3
b , (74a)

and
∑

k1k2k3

N k1k2k3
a

∗ Qk1k2k3
b = +

∑

k1k2k3

N k1k2k3
a

∗ Sk1k2k3
b

= +
∑

k1k2k3

Qk1k2k3
a

∗ N k1k2k3
b

= −
∑

k1k2k3

Qk1k2k3
a

∗ Sk1k2k3
b

= +
∑

k1k2k3

Sk1k2k3
a

∗ N k1k2k3
b

= −
∑

k1k2k3

Sk1k2k3
a

∗ Qk1k2k3
b . (74b)

Analogous properties can be derived for terms mixing
{M,P,R} and {N ,Q,S}.

Let us now consider !11, whose second-order contribu-
tions, evaluated in Eqs. (B17) and (B19), can be written as

!
11 (2′)
ab (ω)

= 1
2

∑

k1k2k3

{
Mk1k2k3

a

(
Mk1k2k3

b

)∗

ω − Ek1k2k3 + iη
+

(
N̄ k1k2k3

a

)∗ N̄ k1k2k3
b

ω + Ek1k2k3 − iη

}

,

(75)

!
11 (2′′)
ab (ω)

= −
∑

k1k2k3

{
Mk1k2k3

a

(
Pk1k2k3

b

)∗

ω − Ek1k2k3 + iη
+

(
N̄ k1k2k3

a

)∗ Q̄k1k2k3
b

ω + Ek1k2k3 − iη

}

,

(76)

where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been intro-
duced. Summing the two terms and using properties (73) and
(74) one obtains

!
11 (2′+2′′)
ab (ω)

=
∑

k1k2k3

{
Ck1k2k3

a

(
Ck1k2k3

b

)∗

ω − Ek1k2k3 + iη
+

(
D̄k1k2k3

a

)∗ D̄k1k2k3
b

ω + Ek1k2k3 − iη

}

, (77)

where

Ck1k2k3
a ≡ 1√

6

[
Mk1k2k3

a − Pk1k2k3
a − Rk1k2k3

a

]
, (78a)

Dk1k2k3
a ≡ 1√

6

[
N k1k2k3

a − Qk1k2k3
a − Sk1k2k3

a

]
. (78b)

Notice that from Eqs. (71) and (72) follow C̄k1k2k3
a =

+ηa Ck1k2k3
ã and D̄k1k2k3

a = −ηa Dk1k2k3
ã . All other second-order
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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2.3 Gorkov equations

its grand-canonical version as

Ω = T + U − µZ − µN︸ ︷︷ ︸
≡ ΩU

+ V − U︸ ︷︷ ︸
≡ ΩI

, (2.31)

where now U represents an explicitly symmetry-breaking auxiliary one-body potential. The
latter can be written as

U =
∑

αβ

[
uαβ a†

αaβ + 1
2uan.

αβ a†
αa†

β + 1
2(uan.

αβ )∗ aαaβ

]
, (2.32)

where uαβ = u∗
βα and uan.

αβ = −uan.
βα without loss of generality. As a result, both the

unperturbed Hamiltonian ΩU and the perturbation ΩI are symmetry-breaking operators.
The perturbative expansion of Gorkov propagators is then devised following the stan-

dard approach of defining an unperturbed propagator, g0(t − t′), according to defini-
tions (2.14) but with operators defined in interaction picture (cf. Eq. (1.8)), where now
H0 is replaced by the one-body grand potential ΩU . After Fourier transform to frequency
domain, one finds

g0(ω) = [ωI − ΩU ]−1 , (2.33)

where single-particle and Nambu indices are implicit and the matrix inversion is performed
with respect to both. One then exploits the interaction picture to construct a perturbative
expansion of the full propagator, Eq. (2.17), that can be represented as a series of Feynman
diagrams in powers of the perturbation ΩI [57]. Doing so, the standard Dyson equation
for the exact propagator is generalised to a set of coupled Gorkov equations for the four
propagators (2.20). Using Nambu’s matrix notation, the equations read as

gαβ(ω) = g0 αβ(ω) +
∑

γ δ

g0 αγ(ω) Σ%
γδ(ω) gγβ(ω) , (2.34)

where the four self-energies

Σ%
αβ(ω) ≡




Σ% 11

αβ (ω) Σ% 12
αβ (ω)

Σ% 21
αβ (ω) Σ% 22

αβ (ω)



 (2.35)

include all possible one-particle irreducible diagrams stripped of their external legs. As for
the Dyson case, the remaining reducible diagrams are then generated in a non-perturbative
way through the all-orders resummation generated by Eq. (2.34).

In standard perturbation theory, a given approximation to Σ%(ω) is a functional of the
unperturbed propagators g(0)(ω) and hence depends directly on the choice of the reference
state associated with ΩU . In SCGF theory, the series of diagrams to be resummed is
further restricted to skeleton diagrams displaying no self-energy insertion, provided that
all propagator lines are replaced by the interacting propagator g(ω). Since the full Dyson-
Gorkov series is included in such a propagator, the SCGF procedure not only reduces the
number of Feynman diagrams that need to be dealt with but it implicitly accounts for
higher-order terms that are beyond the perturbative truncation chosen for the self-energy.
The self-energy becomes a functional of the interacting propagator, Σ%[g; T, V ] and no
longer depends on the unperturbed state. The price to pay for such improvements is that
diagrams expressed in terms of g(ω) are more demanding to deal with, due to the rich

25
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2.3 Gorkov equations

its grand-canonical version as

Ω = T + U − µZ − µN︸ ︷︷ ︸
≡ ΩU

+ V − U︸ ︷︷ ︸
≡ ΩI

, (2.31)

where now U represents an explicitly symmetry-breaking auxiliary one-body potential. The
latter can be written as

U =
∑

αβ

[
uαβ a†

αaβ + 1
2uan.

αβ a†
αa†

β + 1
2(uan.

αβ )∗ aαaβ

]
, (2.32)

where uαβ = u∗
βα and uan.

αβ = −uan.
βα without loss of generality. As a result, both the

unperturbed Hamiltonian ΩU and the perturbation ΩI are symmetry-breaking operators.
The perturbative expansion of Gorkov propagators is then devised following the stan-

dard approach of defining an unperturbed propagator, g0(t − t′), according to defini-
tions (2.14) but with operators defined in interaction picture (cf. Eq. (1.8)), where now
H0 is replaced by the one-body grand potential ΩU . After Fourier transform to frequency
domain, one finds

g0(ω) = [ωI − ΩU ]−1 , (2.33)

where single-particle and Nambu indices are implicit and the matrix inversion is performed
with respect to both. One then exploits the interaction picture to construct a perturbative
expansion of the full propagator, Eq. (2.17), that can be represented as a series of Feynman
diagrams in powers of the perturbation ΩI [57]. Doing so, the standard Dyson equation
for the exact propagator is generalised to a set of coupled Gorkov equations for the four
propagators (2.20). Using Nambu’s matrix notation, the equations read as

gαβ(ω) = g0 αβ(ω) +
∑

γ δ

g0 αγ(ω) Σ%
γδ(ω) gγβ(ω) , (2.34)

where the four self-energies

Σ%
αβ(ω) ≡




Σ% 11

αβ (ω) Σ% 12
αβ (ω)

Σ% 21
αβ (ω) Σ% 22

αβ (ω)



 (2.35)

include all possible one-particle irreducible diagrams stripped of their external legs. As for
the Dyson case, the remaining reducible diagrams are then generated in a non-perturbative
way through the all-orders resummation generated by Eq. (2.34).

In standard perturbation theory, a given approximation to Σ%(ω) is a functional of the
unperturbed propagators g(0)(ω) and hence depends directly on the choice of the reference
state associated with ΩU . In SCGF theory, the series of diagrams to be resummed is
further restricted to skeleton diagrams displaying no self-energy insertion, provided that
all propagator lines are replaced by the interacting propagator g(ω). Since the full Dyson-
Gorkov series is included in such a propagator, the SCGF procedure not only reduces the
number of Feynman diagrams that need to be dealt with but it implicitly accounts for
higher-order terms that are beyond the perturbative truncation chosen for the self-energy.
The self-energy becomes a functional of the interacting propagator, Σ%[g; T, V ] and no
longer depends on the unperturbed state. The price to pay for such improvements is that
diagrams expressed in terms of g(ω) are more demanding to deal with, due to the rich
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Chapter 2 Gorkov formalism

It is useful to introduce a Nambu representation also for the Lehmann form of the
propagators by defining the two-component vectors

Xk†
α ≡ 〈Ψk|A†

α|Ψ0〉 =
(

Uk∗
α Vk∗

α

)
, (2.25a)

Yk
α ≡ 〈Ψk|Aα|Ψ0〉 =

(
V̄k∗

α

Ūk∗
α

)

, (2.25b)

where A and A† have been introduced in Eq. (2.15), which leads to writing

gαβ(ω) =
∑

k





Xk

α Xk†
β

ω − ωk + iη +
Yk

α Yk†
β

ω + ωk − iη




 . (2.26)

Note that vectors (2.25) contain equivalent physics information and are transformed into
each other by

Xk
α =

(
0 -1
1 0

)

Yk
ᾱ

∗
. (2.27)

Once the spectral representation (2.20) is known, it is possible to extract normal and
anomalous one-body density matrices according to

ραβ ≡ 〈Ψ0|c†
βcα|Ψ0〉 = 1

π

∫ 0

−∞
Im g11

αβ(ω) dω =
∑

k

V̄k
α

∗ V̄k
β , (2.28a)

ρ̃αβ ≡ 〈Ψ0|c̄βcα|Ψ0〉 = 1
π

∫ 0

−∞
Im g12

αβ(ω) dω =
∑

k

V̄k
α

∗ Ūk
β . (2.28b)

The expectation value of any one-body operator O is given by

〈Ψ0|O|Ψ0〉 =
∑

αβ

oαβρβα , (2.29)

whereas the Migdal-Galitski-Koltun energy sum rule is generalised to

Ω0 = 1
2π

∫ 0

−∞
dω

∑

αβ

[
tαβ − µδαβ + ωδαβ

]
Im g11

βα(ω) (2.30)

in the case of a Hamiltonian with up to two-particle interactions. Spectral functions,
its variants and its moments are also easily generalised in analogy with their Dyson
counterparts introduced in Sect. 1.5.

2.3 Gorkov equations
Following the discussion of Sect. 2.1, the Gorkov framework aims at devising approx-
imate (and possibly particle-number symmetry breaking) solutions to the many-body
Schrödinger equation (or, more specifically, to the exact one-body propagator). The cru-
cial step to achieve this consists in generalising the splitting of the Hamiltonian10 (1.6) to
10The formalism presented here is limited to a Hamiltonian with two-body forces only. Gorkov equations

with explicit three-body forces (as well as the Gorkov effective interaction formalism) have been
worked out [125] but introduce a substantial amount of technicalities, which is outside the scope of
this manuscript. The procedure through which three-nucleon forces are included in Gorkov SCGF
calculations is outlined in Sect. 3.2.
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Spectral representation

[Somà, Duguet, Barbieri 2011]

✗ Missing step: symmetry restoration

○ Correct particle number on average

○ Observables “contaminated”

○ Effect depends on nucleus and observable

Self-energy expansion
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ᾱ

∗
. (2.27)

Once the spectral representation (2.20) is known, it is possible to extract normal and
anomalous one-body density matrices according to

ραβ ≡ 〈Ψ0|c†
βcα|Ψ0〉 = 1

π

∫ 0

−∞
Im g11

αβ(ω) dω =
∑

k

V̄k
α

∗ V̄k
β , (2.28a)

ρ̃αβ ≡ 〈Ψ0|c̄βcα|Ψ0〉 = 1
π

∫ 0

−∞
Im g12

αβ(ω) dω =
∑

k

V̄k
α

∗ Ūk
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in the case of a Hamiltonian with up to two-particle interactions. Spectral functions,
its variants and its moments are also easily generalised in analogy with their Dyson
counterparts introduced in Sect. 1.5.

2.3 Gorkov equations
Following the discussion of Sect. 2.1, the Gorkov framework aims at devising approx-
imate (and possibly particle-number symmetry breaking) solutions to the many-body
Schrödinger equation (or, more specifically, to the exact one-body propagator). The cru-
cial step to achieve this consists in generalising the splitting of the Hamiltonian10 (1.6) to
10The formalism presented here is limited to a Hamiltonian with two-body forces only. Gorkov equations

with explicit three-body forces (as well as the Gorkov effective interaction formalism) have been
worked out [125] but introduce a substantial amount of technicalities, which is outside the scope of
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Superfluid self-consistent Green’s functions

Gorkov self-consistent Green’s functions

➝ Algebraic diagrammatic construction [Schirmer 1982]

Bogolyubov coupled-cluster

○ BCCSD implemented [Tichai et al., 2023]
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○ ADC(2) implemented [Somà et al. 2011]

○ BCCSD(T) in progress [Vernik et al., in preparation]

[Somà et al., 2021]

○ ADC(3) derived [Barbieri et al. 2023] Magic numbers emerge “ab initio”

○ Accuracy degrades away from semi-magic Ca

○ Correlation with nuclear deformation

➝ Calls for explicit inclusion of deformation

Drip line predicted
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Figure 3: Similar to Fig. 2 for nickel isotopes.

significantly too low from 134Sn till 138Sn2. The difference
to the data relates to an overestimation of the N = 82
magic shell gap and is inconsistent with our many-body
error estimate. Consequently, it is probably attributable
to the Hamiltonian uncertainty.

The flat evolution of BCCSD S2n beyond 140Sn leads,
within estimated many-body uncertainties, to a large un-
certainty on the location of the predicted neutron drip-
line: A 2 [140 � 162]. In spite of its large span, the pre-
dicted interval is inconsistent with the energy density func-
tional (EDF) prediction, A 2 [172 � 176], from Ref. [74]
(partially) accounting for systematic and statistical uncer-
tainties of the EDF method. The location of the BCCSD
prediction at significantly smaller neutron numbers clearly
originates from the too large drop at N = 82. Conse-
quently, the predicted interval should be enlarged to be-
come consistent with the EDF prediction once the Hamil-
tonian uncertainty is included. Eventually, the uncertainty
should be drastically reduced by including triple excita-
tions and going to larger emax on the one hand and by

2At the mean-field level the ⌫2f7/2 is filled right beyond N = 82.
However, the addition of two neutrons to 132Sn inverts the relative
position of the ⌫2f7/2 and ⌫1h9/2 shells such that the former becomes
the lowest one being filled from 134Sn till 140Sn.
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Figure 4: Ground-state energy for 100�180Sn. Results from HFB,
BMBPT(2) and BCCSD are compared to experimental data. Model-
space parameters are identical to the ones employed in Figs. 2 and
3.
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Figure 5: BCCSD two-neutron separation energies for 100�180Sn
using three different values for the harmonic oscillator frequency
around the empirical minimum of ~⌦ = 12MeV are compared to
experimental data. The gray box locates the drip-line prediction
from energy density functional calculations (including statistical un-
certainty from model parameters) of Ref. [75].

reducing the (presently omitted) Hamiltonian uncertainty
on the other hand.

6. Particle-number breaking and restoration

While the HFB reference state breaks particle-number
conservation in open-shell systems, Fig. 6 displaying
HFB, BMBPT(2) and BCCSD neutron-number variances
�N

2
⌘ h(N � hNi)2i demonstrates that the “EM1.8/2.0”

Hamiltonian induces only weak pairing correlations at
the mean-field level. Indeed the HFB variance is very
close to the minimal boundary corresponding to the zero-
pairing limit [76] along Ca, Ni and Sn isotopic chains ex-
cept, typically, for the most neutron-rich open-shell iso-
topes. Because | i is an eigenstate of N , one expects
that the symmetry violation is reduced by improving on

5

[Tichai et al., 2023]
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6 Occurrence of a charge density bubble in
46
Ar
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Fig. 4: Neutron (⌫) and charge density (ch.) pro-
files of 48Ca (a) and 46Ar (b). The bands represent
the spread of predictions from the four di↵erent
�EFT interactions used. The ab initio results are
compatible with the measured charge distribution
of 48Ca [33] (red line). For 46Ar, the charge deple-
tion is predicted and reflects in an empty s1/2 orbit
at the microscopic level. The three-dimensional
density profiles associate brighter colours with
higher densities.

the proton shell closure in 46Ar is even stronger
than our �EFT predictions. Note that the 1s1/2
and 0d3/2 orbits seen from 48Ca(e,e0p) reactions
almost overlap [44], showing a dramatic change of
structure with a new proton magic number aris-
ing when one moves from Z=20 and Z=18. The
�EFT prediction of this trend is sound and it is
found already at the level of independent particle
approximations (see Methods).

On the contrary, standard shell model calcula-
tions predict the ground-state configuration as an
open shell with a fairly even mixture of the 1s1/2
and 0d3/2 proton orbitals but overestimate the
46Ar B(E2; 0+ ! 2+). Considerations based on
inelastic proton-scattering (p,p’) experiments [18]
narrowed down this overestimation to the proton
component of the B(E2) matrix element and the
presence of too large 1s1/2 admixtures imposed
by the shell model interactions. To solve the long-
standing puzzle of the B(E2; 0+ ! 2+) value, we
performed new shell model calculations by map-
ping the NNLOsat �EFT Hamiltonian [35] into
the e↵ective mean-field orbits generated by SCGF-
ADC(3), as described in Refs. [45, 46] and in
the Methods. The obtained small B(E2) value of
35(1) e2fm4 is in much closer agreement with the
experimental data with respect to the standard
shell model predictions.

The still unknown structure of many near-
dripline isotopes is expected to change dramati-
cally due to extreme proton-neutron asymmetry
conditions. We propose that the charge bubble
phenomenon may be a recurrent feature in atomic
nuclei whenever a s1/2 orbital is near a shell clo-
sure. As clearly shown by the present 46Ar case
study, deviations of the density from the satu-
rated liquid-drop model at the core of the nucleus
can signal previously unknown nuclear structure.
Our work shows that the synergy between exper-
imental measurements and ab initio simulations
provides the necessary link between shell evolu-
tion and nuclear matter bulk properties in exotic
nuclei. In this respect, the knowledge of charge
density distribution in unstable isotopes would be
a primary tool for discovering regions of uncon-
ventional nuclear structure and where to test
and advance our knowledge of nuclear forces. So
far direct measurements of charge distribution in
exotic isotopes have been demonstrated by col-
liding electrons with radioactive ion beams in
storage rings [47, 48] but remain at an infancy
stage. In medium to heavy ions, luminosities of
1027�29 cm�2 s�1 are necessary to extract infor-
mation on charge distribution features beyond the
charge radius, a threshold that could be reached
in future fragmentation facilities [49].

The emergence of nucleon localisation proper-
ties is still to be thoroughly explored [4] and could
help to shape and improve theoretical models.

[Brugnara et al., submitted]
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Separation energies

➪ Exact GF display a spectral representation
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4

Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.

}

⦿ Combine numerator and denominator of Lehmann representation
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.
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➪ Exact GF display a spectral representation

Transition amplitudes

Separation energies

spectroscopic factors

4

Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through

S(z) ⌘
X

µ2HA+1

S+
µ
�(z � E

+
µ
) +

X

⌫2HA�1

S�

⌫
�(z � E

�

⌫
)

where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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⇤
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X

a2H1

|V a

⌫
|2 (45b)

which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through
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)

where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.
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⦿ Combine numerator and denominator of Lehmann representation
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through

S(z) ⌘
X

µ2HA+1

S+
µ
�(z � E

+
µ
) +

X

⌫2HA�1

S�

⌫
�(z � E

�

⌫
)

where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.
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➪ Exact GF display a spectral representation
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Separation energies

Lehmann representation

4.3 Spectroscopy of odd-even nuclei
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Figure 4.5 One-nucleon addition and removal spectra from/to 54Ca. Available experi-
mental values are displayed as black thick lines, in the left column of each panel. Gorkov
ADC(2) calculations are represented by blue (second column) and green (third column)
thick lines for NNLOsat and NN+3N(lnl) respectively. The red thin lines are ADC(3)
energies for both Hamiltonians, with shaded areas connecting the corresponding ADC(2)
and ADC(3) values where available. For 55Ca, states obtained via one-neutron removal
from 56Ca in the ADC(2) approximation are also shown. Low-lying states with Ex < 5
MeV and spectroscopic factor larger than 10% are displayed. The figure is taken from
Ref. [82].

which are complementing the currently scarce data in the region, aim at characterising,
among other points, the N = 32, 34 subshell gaps [188, 198], the behaviour of calcium
isotope towards N = 40 [86] and the spin inversion of potassium ground states [83]. In
53Ca, two excited states have been measured around 2 MeV with tentative spin-parity
assignments of 5/2− and 3/2− [199, 200]. SCGF calculations produce the two states and
support the spin assignments. Among the two employed interactions, NN+3N(lnl) does a
better job in reproducing both the position and the energy splitting between the two levels.
NNLOsat results also show a larger uncertainty originating from the self-energy truncation.
In 55Ca, in addition to one-neutron addition states to 54Ca, one-neutron removal states
from 56Ca in the ADC(2) approximation are shown. The spectra generated by the two
interactions display the same low-lying states, although the one from NNLOsat is more
compressed than the one from NN+3N(lnl). In both cases the excited state corresponding
to the main one-neutron addition quasiparticle, with spin-parity 9/2+, shows a large
correction from ADC(3). Recently, states in 55Ca were studied experimentally via a proton
removal reaction from 56Sc [86]. A low-lying excited state with spin assignment 1/2− was
identified at 673 keV, somehow in between the SCGF predictions with the two different
interactions. In 53K the predictions from the two Hamiltonians differ the most, with a
different ground state obtained with NNLOsat and NN+3N(lnl). The latter result agrees
with the recent experimental assignment of 3/2+ [83] and also succeeds in reproducing the
energy of the first excited 1/2+ state at about 800 keV. Finally, in 55Sc it is the first excited
states to be different, with NNLOsat and NN+3N(lnl) predicting, respectively, 3/2− and
5/2− states on top of the 7/2− ground state. From these comparisons it emerges that ab
initio SCGF calculations, already at the ADC(2) level, are able to provide a quantitative
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Spectroscopy of A±1

[Soma et al., 2020]
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Fig. 4: Neutron (⌫) and charge density (ch.) pro-
files of 48Ca (a) and 46Ar (b). The bands represent
the spread of predictions from the four di↵erent
�EFT interactions used. The ab initio results are
compatible with the measured charge distribution
of 48Ca [33] (red line). For 46Ar, the charge deple-
tion is predicted and reflects in an empty s1/2 orbit
at the microscopic level. The three-dimensional
density profiles associate brighter colours with
higher densities.

the proton shell closure in 46Ar is even stronger
than our �EFT predictions. Note that the 1s1/2
and 0d3/2 orbits seen from 48Ca(e,e0p) reactions
almost overlap [44], showing a dramatic change of
structure with a new proton magic number aris-
ing when one moves from Z=20 and Z=18. The
�EFT prediction of this trend is sound and it is
found already at the level of independent particle
approximations (see Methods).

On the contrary, standard shell model calcula-
tions predict the ground-state configuration as an
open shell with a fairly even mixture of the 1s1/2
and 0d3/2 proton orbitals but overestimate the
46Ar B(E2; 0+ ! 2+). Considerations based on
inelastic proton-scattering (p,p’) experiments [18]
narrowed down this overestimation to the proton
component of the B(E2) matrix element and the
presence of too large 1s1/2 admixtures imposed
by the shell model interactions. To solve the long-
standing puzzle of the B(E2; 0+ ! 2+) value, we
performed new shell model calculations by map-
ping the NNLOsat �EFT Hamiltonian [35] into
the e↵ective mean-field orbits generated by SCGF-
ADC(3), as described in Refs. [45, 46] and in
the Methods. The obtained small B(E2) value of
35(1) e2fm4 is in much closer agreement with the
experimental data with respect to the standard
shell model predictions.

The still unknown structure of many near-
dripline isotopes is expected to change dramati-
cally due to extreme proton-neutron asymmetry
conditions. We propose that the charge bubble
phenomenon may be a recurrent feature in atomic
nuclei whenever a s1/2 orbital is near a shell clo-
sure. As clearly shown by the present 46Ar case
study, deviations of the density from the satu-
rated liquid-drop model at the core of the nucleus
can signal previously unknown nuclear structure.
Our work shows that the synergy between exper-
imental measurements and ab initio simulations
provides the necessary link between shell evolu-
tion and nuclear matter bulk properties in exotic
nuclei. In this respect, the knowledge of charge
density distribution in unstable isotopes would be
a primary tool for discovering regions of uncon-
ventional nuclear structure and where to test
and advance our knowledge of nuclear forces. So
far direct measurements of charge distribution in
exotic isotopes have been demonstrated by col-
liding electrons with radioactive ion beams in
storage rings [47, 48] but remain at an infancy
stage. In medium to heavy ions, luminosities of
1027�29 cm�2 s�1 are necessary to extract infor-
mation on charge distribution features beyond the
charge radius, a threshold that could be reached
in future fragmentation facilities [49].

The emergence of nucleon localisation proper-
ties is still to be thoroughly explored [4] and could
help to shape and improve theoretical models.

[Brugnara et al., submitted]
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Figure 4.5 One-nucleon addition and removal spectra from/to 54Ca. Available experi-
mental values are displayed as black thick lines, in the left column of each panel. Gorkov
ADC(2) calculations are represented by blue (second column) and green (third column)
thick lines for NNLOsat and NN+3N(lnl) respectively. The red thin lines are ADC(3)
energies for both Hamiltonians, with shaded areas connecting the corresponding ADC(2)
and ADC(3) values where available. For 55Ca, states obtained via one-neutron removal
from 56Ca in the ADC(2) approximation are also shown. Low-lying states with Ex < 5
MeV and spectroscopic factor larger than 10% are displayed. The figure is taken from
Ref. [82].

which are complementing the currently scarce data in the region, aim at characterising,
among other points, the N = 32, 34 subshell gaps [188, 198], the behaviour of calcium
isotope towards N = 40 [86] and the spin inversion of potassium ground states [83]. In
53Ca, two excited states have been measured around 2 MeV with tentative spin-parity
assignments of 5/2− and 3/2− [199, 200]. SCGF calculations produce the two states and
support the spin assignments. Among the two employed interactions, NN+3N(lnl) does a
better job in reproducing both the position and the energy splitting between the two levels.
NNLOsat results also show a larger uncertainty originating from the self-energy truncation.
In 55Ca, in addition to one-neutron addition states to 54Ca, one-neutron removal states
from 56Ca in the ADC(2) approximation are shown. The spectra generated by the two
interactions display the same low-lying states, although the one from NNLOsat is more
compressed than the one from NN+3N(lnl). In both cases the excited state corresponding
to the main one-neutron addition quasiparticle, with spin-parity 9/2+, shows a large
correction from ADC(3). Recently, states in 55Ca were studied experimentally via a proton
removal reaction from 56Sc [86]. A low-lying excited state with spin assignment 1/2− was
identified at 673 keV, somehow in between the SCGF predictions with the two different
interactions. In 53K the predictions from the two Hamiltonians differ the most, with a
different ground state obtained with NNLOsat and NN+3N(lnl). The latter result agrees
with the recent experimental assignment of 3/2+ [83] and also succeeds in reproducing the
energy of the first excited 1/2+ state at about 800 keV. Finally, in 55Sc it is the first excited
states to be different, with NNLOsat and NN+3N(lnl) predicting, respectively, 3/2− and
5/2− states on top of the 7/2− ground state. From these comparisons it emerges that ab
initio SCGF calculations, already at the ADC(2) level, are able to provide a quantitative
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SCGF provide easy access to several other observables
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[Barbieri et al., 2019]

ν-nucleus scattering
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Deformed self-consistent Green’s functions

Extension of SCGF to SU(2)-breaking framework 

○ Deformed HF reference state

○ ADC(2) truncation
[Scalesi et al. in preparation]

○  Trend consistent with CC results
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4

Deformed self-consistent Green’s functions

Extension of SCGF to SU(2)-breaking framework 

○ Deformed HF reference state

○ ADC(2) truncation

○ Opens the possibility of targeting odd systems

○  Trend consistent with CC results

○  Successful benchmark in odd-even isotopes

○  Preliminary test in odd-Z chain promising

➝ First odd-odd calculations with expansion methods!

[Scalesi et al. in preparation]

○  Absence of symmetry restoration problematic
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PGCM

Alternative strategy: break symmetries, project, then expand

Projection

Shape mixing

Rotational modes

Vibrational modes

Variational principle  ➝  Hill-Wheeler-Griffin equation

6

(PGCM). The unperturbed state is thus of MR character
given that a PGCM state is nothing but a linear combina-
tion of non-orthogonal product states whose coe�cients
result from solving Hill-Wheeler-Gri�n’s (HWG) secu-
lar problem [21], i.e. a generalized many-body eigenvalue
problem. The PGCM perturbation theory (PGCM-PT)
of present interest adapts to the nuclear many-body
problem the MR perturbation theory recently formu-
lated in the context of quantum chemistry [?] where
the reference state arises from a non-orthogonal config-
uration interaction (NOCI) calculation involving Slater
determinants. In order to do so, the method is presently
generalized to the mixing of Bogoliubov vacua.

In the present context, PGCM must thus be viewed as
the unperturbed, i.e. zeroth-order, limit of the PGCM-
PT formalism that is universally applicable, i.e. indepen-
dently of the closed or open-shell nature of the system
and of the ground or excited character of the PGCM
state generated though the initial HWG problem. Be-
cause PGCM states e�ciently capture strong static
correlations associated with the spontaneous breaking
of symmetries and their restoration as well as with
large amplitude collective fluctuations, one is only left
with incorporating the remaining weak dynamical cor-
relations, which PGCM-PT o↵ers to do consistently.
Because of the incorporation of static correlations into
the zeroth-order state, the hope is that nuclear observ-
ables associated with a large set of nuclei and quantum
states can be su�ciently converged at low orders in
PGCM-PT.

3.1 PGCM unperturbed state

3.1.1 Ansatz

|⇥0
i = |�(q)i
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q
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A MR PGCM state can be written as
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µ
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Z
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X

q
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µ
(q)

X

✓

D�̃⇤
M0(✓)|�(q; ✓)i , (27)

where integrals over the collective coordinate q and the
rotation angle ✓ have been discretized as actually done
in a practical calculation.

In Eq. (27), Bq ⌘ {|�(q)i; q 2 set} denotes a set of non-
orthogonal Bogoliubov states di↵ering by the value of
the collective deformation parameter q. Such an ansatz is
characterized by its capacity to e�ciently capture static
correlations from a low-dimensional, i.e. from several
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of dealing with non-orthogonal vectors. This constitutes
a very advantageous feature, especially as the mass A of
the system, and thus the dimensionality of the Hilbert
space HA, grows.

The product states belonging to Bq are typically ob-
tained in a first step by solving repeatedly Hartree-Fock-
Boboliubov (HFB) mean-field equations with a Lagrange
term associated with a constraining operator11 Q such
that the solution satisfies

h�(q)|Q|�(q)i = q . (28)

The constrained HFB total energyH00(q) (see Eq. (113))
delivers as a function of q, the so-called HFB total energy
curve (TEC). Details about Bogoliubov states and the
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can be found in App. C. The constraining operator Q is
typically defined such that the product states belonging
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the operator12

P �̃

M0 =
d�̃
vG

Z

DG

d✓D�̃⇤
M0(✓)R(✓) (29)

in Eq. (27) to project the HFB state onto eigenstates of
the symmetry operators with eigenvalues (�̃,M). The
operator P �̃

M0 is expressed in terms of the symmetry
rotation operator R(✓) and the IRREP D�̃
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for details.
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PT formalism that is universally applicable, i.e. indepen-
dently of the closed or open-shell nature of the system
and of the ground or excited character of the PGCM
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Because of the incorporation of static correlations into
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where integrals over the collective coordinate q and the
rotation angle ✓ have been discretized as actually done
in a practical calculation.

In Eq. (27), Bq ⌘ {|�(q)i; q 2 set} denotes a set of non-
orthogonal Bogoliubov states di↵ering by the value of
the collective deformation parameter q. Such an ansatz is
characterized by its capacity to e�ciently capture static
correlations from a low-dimensional, i.e. from several
tens to a few hundreds, configuration mixing at the price
of dealing with non-orthogonal vectors. This constitutes
a very advantageous feature, especially as the mass A of
the system, and thus the dimensionality of the Hilbert
space HA, grows.

The product states belonging to Bq are typically ob-
tained in a first step by solving repeatedly Hartree-Fock-
Boboliubov (HFB) mean-field equations with a Lagrange
term associated with a constraining operator11 Q such
that the solution satisfies

h�(q)|Q|�(q)i = q . (28)

The constrained HFB total energyH00(q) (see Eq. (113))
delivers as a function of q, the so-called HFB total energy
curve (TEC). Details about Bogoliubov states and the
associated algebra, as well as constrained HFB equations,
can be found in App. C. The constraining operator Q is
typically defined such that the product states belonging
to Bq break a symmetry of the Hamiltonian as soon
as q 6= 0. Because physical states must carry good
symmetry quantum numbers one acts on |�(q)i with
the operator12
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M0 =
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Z

DG

d✓D�̃⇤
M0(✓)R(✓) (29)

in Eq. (27) to project the HFB state onto eigenstates of
the symmetry operators with eigenvalues (�̃,M). The
operator P �̃

M0 is expressed in terms of the symmetry
rotation operator R(✓) and the IRREP D�̃

MK(✓) of the

11The generic operator Q can embody several constraining
operators such that the collective coordinate q may in fact be
multi dimensional.
12The present work is e↵ectively concerned with HFB states
that are invariant under spatial rotation around a given sym-
metry axis. Extending the formulation to the case where |�(q)i
does not display such a symmetry poses no formal di�culty
but requires a more general projection operator P�; see App. B
for details.
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symmetry group GH . See App. B for a discussion of the
actual symmetry group, symmetry quantum numbers
and symmetry projector of present interest.

Due to the symmetry projection, the PGCM state is
eventually constructed from an extended set Bq;✓ ⌘

{|�(q; ✓)i; q 2 set and ✓ 2 DG}
13 of Bogoliubov states

11The generic operator Q can embody several constraining
operators such that the collective coordinate q may in fact be
multi dimensional.
12The present work is e↵ectively concerned with HFB states
that are invariant under spatial rotation around a given sym-
metry axis. Extending the formulation to the case where |�(q)i
does not display such a symmetry poses no formal di�culty
but requires a more general projection operator P�; see App. B
for details.
13Seeing the PGCM state as a configuration mixing of states
belonging to Bq;✓ rather than as resulting from the projection
of the states belonging Bq allows one to define the SR limit of
PGCM-PT via the truncation of the double sum in Eq. (27) to
a single term such that the PGCM unperturbed state reduces
to one symmetry-breaking state |�(q; 0)i.
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○ Construction of the unperturbed state via projected generator coordinate method (PGCM)

○ Low-dimensional linear combination of non-orthogonal projected Bogolyubov product states  (← EDF)
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Fig. 1: Dependence of PHFB results in 20Ne (left column)
and 28Ne (right column) on the employed HO model
space. Results are plotted as a function of ~! for various
values of emax. The dashed lines denote extrapolated
values whereas the grey band provides the associated
uncertainty. The first row (panels (a) and (b)) focuses
on the first 2+ absolute energy whereas the second
(panels (c) and (d)) and third (panels (e) and (f)) rows
provide the ground-state energy and associated rms
charge radius. Calculations employ the N3LO �EFT
Hamiltonian with �srg = 1.88 fm�1.

isotopes. In this test, the HFB minimum in the (q20, q30)
plane, systematically obtained at �3 = 0 (see Sec. 3.2.1
below), is projected on good neutron and proton num-
bers as well as on the desired angular momentum J .
Results for two representative examples, 20Ne and 28Ne,
are displayed in Fig. 1 for the ground-state energy and

Fig. 2: (Color online) Constrained HFB TES of 20Ne in
the axial (�2,�3) plane. The (red) full line indicates the
lowest-energy path, with the arrow positioned at the
minimum of the TES. The (red) dots characterize the set
of HFB states used in the subsequent PGCM calculation.
Calculations employ the N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1.

the root-mean-square (rms) charge radius, as well as for
the absolute energy of the first 2+ state.

The three observables show a typical convergence pat-
tern consisting of curves that gradually become inde-
pendent of ~! and closer to each others as the basis
size increases. At each step of the way, the HO fre-
quency delivering the least sensitive results to emax,
i.e. the results that are closest to the converged value,
is given by ~! = 12MeV. Taking the least favorable
case, i.e. 28Ne, the energy of the first 0+ (2+) changes
by 70 keV (72 keV) when going from emax = 10 to
emax = 12 whereas the ground-state charge radius in-
creases by 10�4 fm. Taking the results displayed in Fig. 1
for ~! � 12MeV, their infra-red extrapolation towards
the infinite basis limit is performed according to the
procedure described in Ref. [45] for both energies and
radii. The result of the extrapolation is also displayed,
along with its uncertainty, in Fig. 1.

All PGCM results presented in the following have been
obtained for (~!, emax, e3max) = (12, 10, 14). In most
of the figures shown below, these nominal values are
displayed with an error bar associated with the model
space convergence obtained by adding, in the sense ex-
plained in footnote 5, the distance to the extrapolated
result and the uncertainty on the latter. Focusing again
on the least favorable case, i.e. 28Ne, model-space un-
certainties on the nominal energy of the first 0+ and

1. Constrained HFB 2. Projected HFB
7

Fig. 3: (Color online) Projected HFB TES of 20Ne in the axial (�2,�3) plane for spin-parity values J⇡ =
0+, 1�, 2+, . . . , 7�. In each case, the minimum of the TES is indicated by a (red) star. Calculations employ the
N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

2+ states are 830 keV (0.7%) and 810 keV (0.7%), re-
spectively, whereas the uncertainty on the ground-state
charge radius is 0.02 fm (0.7%).

Furthermore, the impact of e3max has been studied by
varying the truncation parameter in the range e3max =
8� 14 for selected observables. Overall, both energies
and radii are found to be well converged with respect to
e3max, with changes between e3max = 12 and 14 amount-
ing in the least favorable cases to 2-300 keV for total
binding energies and 10�3 fm for charge radii. These
uncertainties can be thus e↵ectively incorporated in the
larger ones resulting from the infinite-basis extrapolation
discussed above.

Given that model-space uncertainties tend to cancel out
in excitation spectra, the errors on the latter are typi-
cally smaller than for absolute energies. One must note
that model-space uncertainties of the nominal calcula-
tions are sub-leading compared to the error associated
with the rank-reduction of the three-nucleon interaction
whose maximal value along the Ne chain has been eval-
uated to be respectively 2.5% and 2.6% for the ground-
state charge radius and low-lying excitation energies of
30Ne [15].

3.2 20Ne

The present study focuses first on the stable 20Ne isotope.
This nucleus has been extensively studied experimentally
and theoretically in the past [46,47], in part because it
is one of the few nuclei displaying a strong admixture of
cluster configurations in the ground state. The ab initio
description of this doubly open-shell nucleus is thus
a challenge given that it is necessary to appropriately
capture both dynamical and static correlations.

3.2.1 Total energy surfaces

Figure 2 displays the HFB TES of 20Ne in the axial
(�2,�3) plane. The energy minimum is found for the
reflection-symmetric prolate shape characterized by de-
formation parameters (�2 = 0.57, �3 = 0). Still, the
TES is more shallow in the octupole direction than
in the quadrupole direction such that one may antic-
ipate octupole shape fluctuations in the ground-state
and an octupole vibration at an energy lower than the
quadrupole one.

Figure 3 shows the PHFB TES in the axial (�2,�3)
plane for spin-parity J⇡ = 0+, 1�, 2+, . . . , 7�. Each
HFB state is projected onto neutron and proton num-
bers (N,Z) = (10, 10) using N'n = N'p = 7 mesh
points in the interval 'n,p 2 [0,⇡]. The projection on
good angular momentum involves N� = 20 Euler angles
in the interval '� 2 [0,⇡]. Static correlations associated
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uncertainties can be thus e↵ectively incorporated in the
larger ones resulting from the infinite-basis extrapolation
discussed above.

Given that model-space uncertainties tend to cancel out
in excitation spectra, the errors on the latter are typi-
cally smaller than for absolute energies. One must note
that model-space uncertainties of the nominal calcula-
tions are sub-leading compared to the error associated
with the rank-reduction of the three-nucleon interaction
whose maximal value along the Ne chain has been eval-
uated to be respectively 2.5% and 2.6% for the ground-
state charge radius and low-lying excitation energies of
30Ne [15].

3.2 20Ne

The present study focuses first on the stable 20Ne isotope.
This nucleus has been extensively studied experimentally
and theoretically in the past [46,47], in part because it
is one of the few nuclei displaying a strong admixture of
cluster configurations in the ground state. The ab initio
description of this doubly open-shell nucleus is thus
a challenge given that it is necessary to appropriately
capture both dynamical and static correlations.

3.2.1 Total energy surfaces

Figure 2 displays the HFB TES of 20Ne in the axial
(�2,�3) plane. The energy minimum is found for the
reflection-symmetric prolate shape characterized by de-
formation parameters (�2 = 0.57, �3 = 0). Still, the
TES is more shallow in the octupole direction than
in the quadrupole direction such that one may antic-
ipate octupole shape fluctuations in the ground-state
and an octupole vibration at an energy lower than the
quadrupole one.

Figure 3 shows the PHFB TES in the axial (�2,�3)
plane for spin-parity J⇡ = 0+, 1�, 2+, . . . , 7�. Each
HFB state is projected onto neutron and proton num-
bers (N,Z) = (10, 10) using N'n = N'p = 7 mesh
points in the interval 'n,p 2 [0,⇡]. The projection on
good angular momentum involves N� = 20 Euler angles
in the interval '� 2 [0,⇡]. Static correlations associated
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Fig. 4: (Color online) Collective PGCM wave-functions in the axial (�2,�3) plane of low-lying positive- and
negative-parity states. Calculations employ the N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

Fig. 5: (Color online) Low-lying positive- and negative-parity bands in 20Ne. The intra-band E2 transition strengths
(in e2fm4) are indicated along vertical arrows whereas a selection of E3 transition strengths (in e3fm6) are indicated
along oblique lines. Panel (a): PGCM results obtained by restricting the mixing to the quadrupole axial degree of
freedom. Panel (b): PHFB results based on the HFB configuration corresponding to the minimum of the 0+ TES
located at (�2 = 0.75, �3 = 0.53) (see Fig. 3). Panel (c): PGCM results obtained using the set of points in the axial
(�2,�3) plane displayed in Fig. 2. Panel (d): IM-NCSM results. Panel (e): experimental data. PGCM results in
panel (c) display model-space (black box) plus �EFT (pink band) uncertainties. IM-NCSM results in panel (d)
display total many-body (black box) plus �EFT (pink band) uncertainties. The N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1 is employed in PGCM and IM-NCSM calculations.

3.2.3 Density distributions

Point matter densities of 20Ne associated with three
di↵erent HFB configurations are displayed in the x-y

6While IM-NCSM energies and radii are very robust, it is
less clear for B(E2) values at this point in time such that the
reference should be taken with a grain of salt.
7Excitation energies of the positive parity band were however
slightly worse than in the present calculation.
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6While IM-NCSM energies and radii are very robust, it is
less clear for B(E2) values at this point in time such that the
reference should be taken with a grain of salt.
7Excitation energies of the positive parity band were however
slightly worse than in the present calculation.

○ Maps total energy surface (TES)
○ Strongly deformed minimum

○ Projections favour deformation
○ Provide input for PGCM ○ Significant shape fluctuations

Example: doubly open-shell Neon-20

○ Static correlations play important role

○ Well-studied experimentally

○ GC: quadrupole (β2) and octupole (β3) deform.
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Fig. 6: (Color online) Point matter distribution of 20Ne in the x-y plane corresponding to three constrained HFB
configurations located at (i) (�2 = 0.7, �3 = 0), (ii) (�2 = 0.7, �3 = 0.9) and (iii) (�2 = 1.2, �3 = 1.2) in the axial
(�2, �3) plane. Calculations employ the N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

Fig. 7: (Color online) Spherical HFB, PGCM and experi-
mental 20Ne ground-state charge density distributions in
linear (upper panel) and logarithmic (lower panel) scales.
Calculations employ the N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1.

plane in Fig. 6. The three chosen configurations cor-
respond to (i) the maximum of the 0+ ground-state
collective wave-function (�2 = 0.7, �3 = 0), (ii) the
half-maximum of the 0+ ground-state collective wave-
function with the largest octupole deformation (�2 = 0.7,
�3 = 0.9) and (iii) the maximum of the 1� state collec-
tive wave-function (�2 = 1.2, �3 = 1.2). Panels (i) and
(ii) demonstrate that the ground-state not only displays
clustering but actually mixes configurations ranging

from a dominant compact ↵ +12 C + ↵ structure to a
sub-leading quasi-16C+ ↵ structure. Panel (iii) proves
that the low-lying negative parity band is built out of a
proper 16C+ ↵ cluster structure.

Of course, intrinsic cluster structures are not observ-
able per se and can only be probed indirectly. Still, the
observable charge density distribution displays finger-
prints of many-body correlations among which are the
strong static correlations associated with intrinsic shape
deformation and fluctuation. In order to illustrate this
feature, the radial PGCM charge density distribution of
the 0+ ground-state is compared to experimental data
and to the charge density computed from the spherical
HFB (sHFB) configuration in Fig. 7. Charge density
distributions with respect to the center of mass are
obtained from point-proton and point-neutron density
distributions according to the procedure described in
App. D. As visible from the upper panel of Fig. 7, the
PGCM charge density reproduces very satisfactorily the
experimental data. While it is too low in the center of
the nucleus, many-body correlations partly fill up the
artificial depletion displayed at the nuclear center by
the sHFB density and suppress the latter accordingly
in the interval r 2 [1, 2] fm. Furthermore, static correla-
tions associated with shape deformation and fluctuation
increase the charge density distribution in the interval
r 2 [4, 5] fm to improve the agreement with experimental
data. However, and as visible in the lower panel of Fig. 7,
the long tail part of the PGCM density overshoots the
experimental density. This is consistent with both the
too low two-neutron separation energy and the too high
rms charge radius rch discussed later on.

3.3 Isotopic chain

The PGCM spectroscopic results obtained in the non-
trivial 20Ne isotope are very encouraging. In order to
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experimental density. This is consistent with both the
too low two-neutron separation energy and the too high
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3.3 Isotopic chain

The PGCM spectroscopic results obtained in the non-
trivial 20Ne isotope are very encouraging. In order to

α+12C+α 16O+α

[Frosini et al., 2022]
PGCM

○ Collective w.f. ≈ probability distr.
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PGCM & PGCM-PT

PGCM excitation spectrum
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Fig. 4: (Color online) Collective PGCM wave-functions in the axial (�2,�3) plane of low-lying positive- and
negative-parity states. Calculations employ the N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.
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�srg = 1.88 fm�1 is employed in PGCM and IM-NCSM calculations.

3.2.3 Density distributions

Point matter densities of 20Ne associated with three
di↵erent HFB configurations are displayed in the x-y

6While IM-NCSM energies and radii are very robust, it is
less clear for B(E2) values at this point in time such that the
reference should be taken with a grain of salt.
7Excitation energies of the positive parity band were however
slightly worse than in the present calculation.

PGCM IM-NCSM Experiment

○ Good agreement with experiment and (quasi-)exact IM-NCSM

➝  Essential static correlations captured by PGCM
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Fig. 9: Absolute energies of the first 0+, 2+ and 4+

states in 20Ne computed via PGCM, PGCM-PT(2) and
FCI.

PGCM-PT(2) favor configurations17 to the left of the
HFB minimum (�2 = [0.25, 0.30]). As a result, dynami-
cal correlations could counterbalance the overestimated
radii obtained at the PGCM level (see Paper II) due
to the opposite predilection of the latter for deforma-
tions larger than the HFB minimum. This interesting
and non-trivial finding will have to be confirmed by an
explicit calculation of rms radii at the PGCM-PT(2)
level in the future.

In addition to providing accurate absolute energies in
complex systems, e.g. in doubly open-shell nuclei dis-
playing strong collective static correlations, a key ad-
vantage of the multi-reference PGCM-PT formalism
over BMBPT is that it provides natural access to the
low-lying spectroscopy within a symmetry-conserving
scheme by correcting each PGCM eigenstate for dynam-
ical correlations.

The first 2+ and 4+ excitation energies in 20Ne are
shown in Fig. 8 as a function of the axial quadrupole
deformation. First, one observes that the PGCM 2+1
and 4+1 excitation energies di↵er from the FCI results

17Once again, single excitations bring negligible contributions
to the correlation energy.

by 300 keV (27%) and 560 keV (13%), respectively. This
is consistent with the results displayed in Paper II. One
also sees that PHFB results at the canonical deformation
(�2 = 0.3) are very close to PGCM ones, but the di↵er-
ences grow for smaller or large deformations. Adding
dynamical correlations, PHFB-PT(2) flattens the exci-
tation energies as a function of �2 compared to PHFB,
systematically going into the direction of PGCM-PT(2)
for each deformation. Given that exact results would be
independent of the deformation of the underlying vac-
uum, this feature is an empirical sign that PHFB-PT(2)
results are better converged than PHFB ones. It also
implies that the PGCM-PT(2) spectrum converges with
fewer states than the PGCM one. Still, at the canoni-
cal deformation (�2 = 0.3) dynamical correlations are
small, which remains true even when shape mixing is
added, given that PGCM-PT(2) excitation energies are
essentially identical to PGCM ones.

Overall, the PGCM-PT(2) 2+1 and 4+1 excitation ener-
gies di↵er by 24% and 15% from FCI results respectively,
which seems to indicate that missing correlations are
beyond two-particle/two-hole excitations of axially de-
formed HF states. While going to PGCM-PT(3) will
help reduce this di↵erence, it might be numerically less
costly and more relevant in this case to enrich the PGCM
unperturbed state via, e.g., the inclusion of octupole,
triaxial and/or pairing degrees of freedom, or to start
from HFB states obtained via a variation after particle-
number-projection (VAPNP) calculation, in order to
compress the spectrum. In the future, another possibility
would be to design a non-perturbative extension of the
multi-reference PGCM-PT formalism to more e�ciently
capture higher-rank particle-hole excitations.

Our 20Ne results are summarized in Fig. 9 where the
combined benefits of PGCM-PT are clearly apparent.
Although a slight overbinding of about 3MeV (⇠ 1.5%)
is observed, PGCM-PT(2) brings down absolute energies
to the right range of values without degrading their
relative position. This latter feature is far from trivial
given that the PGCM-PT formalism is state specific,
i.e. calculations are performed separately on top of each
PGCM eigenstate, and considering that each PGCM
energy is corrected by about 25MeV while their relative
distance is on the MeV scale. In particular, the (non-
trivial) numerical techniques used to solve the PGCM-
PT(2) equations must be well controlled to maintain the
consistency of the spectra. For example, it is essential
to use the same complex shift � for all states belonging
to a given nucleus in order for the bias on absolute
energies to be consistent and to largely cancel out in
the excitation spectrum.

○ Non-orthogonal PT: only one eigenstate of H0 is known

○ No well-defined Hilbert-space partitioning

○ Rigorous PT formalised only recently     [Burton & Thom 2020]

[Frosini et al., 2022]

Dynamical correlations?

Perturbative expansion on top of PGCM state (PGCM-PT)

Dynamical correlations cancel out to a large extent in relative energies
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Conclusions and perspectives

Symmetry breaking

Numerical cost

○ Deformation [SU(2) breaking] mandatory for describing (doubly open-shell) nuclei at polynomial cost

○ Superfluidity [U(1)-breaking] sufficient if one targets singly open-shell systems

○ Symmetry breaking (and restoration) come with extra cost

○ Techniques needed to reduce costs

➝ Larger number of basis states needed for deformed calculations (n~2000 compared to n~200 in spherical)

➝ PGCM: remains mean-field-like, n4, but acquires large prefactor (~hundreds)

➝ PGCM-PT: second order already scales as n8  (compared to n5 for standard MBPT)

➝ Natural orbitals, importance truncation, tensor factorisation, …. 

Symmetry restoration

○ Formulated for MBPT and CC  [Duguet 2015, Duguet & Signoracci 2017, Qiu et al., 2017, … ] & recently applied  [Hagen et al., 2022, … ]

○ To be formulated for SCGF
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