

Continuous-Variable Optimization - Quantum vs Classical -

Hidetoshi Nishimori Tokyo Institute of Technology

Quantum Annealing

A brief overview for discrete variables

What is quantum annealing?

- Quantum algorithm for the ground-state search of the Ising model, typically the spin glass.
- Quantum counterpart of simulated annealing.

Classical simulated annealing uses thermal hopping. Quantum annealing employs tunneling.

To find the lowest-energy state

 $H = -\sum J_{ij}\sigma_i^z\sigma_j^z$

From Wikipedia

Ground-state search of the Ising model

Transverse-field Ising model

Time evolution

Comparison of quantum annealing and simulated annealing

Small spin glass problem (8 spins)

Kadowaki and Nishimori, Phys. Rev. E **58**, 5355 (1998)

Research activities of quantum annealing is expanding rapidly

Number of papers with the keyword "quantum annealing"

Data from Google Scholar

Exponential growth

Number of papers with the keyword "quantum annealing"

Singularity at 2052

Number of papers with the keyword "quantum annealing"

Hardware implementation

Hardware implementation of moderately-large scale (5000 qubits) is commercialized.

"D-Wave Advantage" device at Jülich, Germany

Hardware implementation

"D-Wave Advantage" device

Building to house D-Wave Advantage

Hardware implementation

Emergency power backup operated by Schrödinger's cat

Quantum simulation of the Kibble-Zurek mechanism

- Data from 2000-qubit system agrees with the theory including the quantum coefficient at short time scale up to about 50 ns.
- No fitting parameters.
- The device runs coherently up to 50 ns.
- Environment (thermal effect) affects after about 50 ns.

The Kibble-Zurek theory has been confirmed including the coefficient.

King et al, Nature Phys. 18, 1324 (2022)

Quantum annealing used solve real-world problem

穴

To minimize waiting time of trucks by optimization of the motion of cranes.

Port of Los Angeles

- Instructions to the cranes should be sent out about every 10 seconds.
- D-Wave sends back its solution within a few seconds.
- Classical methods take longer than 10 seconds, thus unpractical.
- Constant speedup is sufficient for this type of real-time processing.

Continuous-variable optimization

S. Arai, H. Oshiyama and H. Nishimori, Phys. Rev. A **108**, 042403 (2023)

Y. W. (Patrick) Koh and H. Nishimori, Phys. Rev. A 105, 062435 (2022)

1d problem with rugged energy landscape

Rastrigin function

One of standard benchmark functions in the field of continuous-variable optimization

$$V(x) = \frac{1}{2}kx^{2} + \frac{h_{0}}{2} \left[1 - \cos\left(\frac{2\pi x}{w_{0}}\right) \right]$$

- Hardness is controllable by h_0 and w_0 (=0.2).
- *N*=211, ∆*x*=0.02857

Ground-state probability (success rate)

Simulated annealing

Barrier height: Green: highest Brown: Intermediate Blue: Lowest

• Simulated annealing is strongly affected by the barrier height.

Ground-state probability (success rate)

Tokyo Tech

Barrier height: Green: highest Brown: Intermediate Blue: Lowest

- Simulated annealing is strongly affected by the barrier height.
- Simulated quantum annealing is less affected by the height. Partly simulating tunneling effects.

Barrier height: Green: highest Brown: Intermediate Blue: Lowest

- Simulated annealing is strongly affected by the barrier height.
- Simulated quantum annealing is less affected by the height. Partly simulating tunneling effects.
- D-Wave is less susceptible to the height than simulated annealing but shows evidence of thermal effects.

Barrier height: Green: highest Brown: Intermediate Blue: Lowest

- Simulated annealing is strongly affected by the barrier height.
- Simulated quantum annealing is less affected by the height. Partly simulating tunneling effects.
- D-Wave is less susceptible to the height than simulated annealing but shows evidence of thermal effects.
- Coherent QA (thermal-noise free) is independent of the height. Quantum tunneling in action.
- Building QA device with minimal thermal noise will greatly enhance the performance of QA.

Video 1: T = 320

Video 2: T = 3250

Video 3: T = 5500

Video 4: T = 10000

Conclusion

- Continuous-variable optimization has been solved via the Ising model.
- Quantum tunneling helps the system reach the optimal state more efficiently than classical hill-climing processes.