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Outline 
• Variational Quantum Eigensolver (VQE): 


• Brief introduction to VQE. 


• Applications to ground state energies and hyperfine interactions in atoms. 


• Dipole moments of molecules. 


• Quantum Annealer Eigensolver (QAE): 


• Brief introduction to QAE. 


• Applications to fine structure splitting in atoms. 

The focus of both variational algorithms in this talk will be on 
quantum computations of relativistic and many-body effects. 



Digital quantum computing

• Qubits: Quantum states . 


• Quantum gates: Unitary operators. , , and : examples of 1-qubit gates. 
: an example of a 2-qubit gate. 


• Quantum computation using quantum circuits (qubits and quantum gates): 


. 


• In our quantum computation, we use layers of rotations and CNOT gates. 


•

a |0⟩ + b |1⟩
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CNOT
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Relativistic Effects in Atomic Systems

Non-Relativistic Hamiltonian

For large Z, velocities of electrons increase and they must be treated relativistically

 
Relativistic Hamiltonian

 
Leading order correction to the Coulomb interaction is the Breit interaction


 and  are (4x4) matrices. Other relativistic corrections are generally less important.α β
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: Dirac-Coulomb Hamiltonian
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Hyperfine structure constant
• The hyperfine Hamiltonian is given by . 


• The quantity can be represented as an effective Hamiltonian: . 


• . 


•  is often a difficult quantity to evaluate, since it is determined by a complex 
interplay of several electron correlation effects, unlike the energy. 


• Its computation requires accurate single particle wave functions in the nuclear 
region, and hence computing  is a sensitive test of relativistic and correlation 
effects in atoms and molecules. 


•
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VQE algorithm



VQE
Introduction

(A Kandala et al, Nature 2017)

(A Peruzzo et al, Nature Communications 2014)



VQE
Flowchart 



• Hyperfine structure constants computation for neutral Li and highly charged isoelectronic systems: Li-like Sc, Li-
like Pr, and Li-like Bi. 


• Four qubit computations on superconducting qubit hardware at RIKEN (Nakamura lab). 


• Choice of hardware efficient ansatz:  type. Linear entanglement strategy. 
Depth of one. 


• Benchmarked with all-electron calculations in the complete Hilbert subspace that was considered. 


• The major challenge: the same ansatz needs to capture dissimilar correlation effects involved in both properties. 


• ;  is evaluated on a classical computer, and  on a quantum computer. Error 

can occur from both these sources. 


• The accuracy in our calculations is about 99 percent for energies and vary between 60 and 80 percent for the 
hyperfine structure constants, all relative to the best classical computation (Full CI- exact diagonalization in a 
limited space). 

RX(π/2) − RZ(θ) − RX(π/2) − CNOT

𝒜exp = ∑
l

whfs
l ⟨Pl⟩exp whfs

l ⟨Pl⟩exp

State-of-the-art: 


• Hardware efficient ansatz: Kandala et al (Nature 2017): best precision is 1.6 mHa for H2 in its equilibrium bond length. 


• UCC Ansatz: Guo et al (Nature Physics 2024): Best precision is ~0.1 mHa for H2 in its equilibrium bond length. 

VQE algorithm for relativistic calculations of ground state energies and 
hyperfine structure costants  



VQE algorithm for relativistic calculations of molecular electric dipole moments  

arXiv 2406.04992 (2024) 

• Computation of molecular electric dipole moments (PDMs) of single valence molecules. 


• Choice of ansatz: unitary coupled cluster in the singles and doubles approximation 
(UCCSD): . 


• The set of amplitudes  are the variational parameters. 


• Eighteen qubit simulations: PDMs of BeH through RaH (3 occupied + 15 unoccupied). 
Relativistic effects can be as large as 25 percent for PDM of RaH.


• Six qubit computations on IonQ Aria-I device: PDMs of moderately heavy SrH and SrF 
(3+3). 


• Twelve qubit computations on IonQ Forte-I device: PDMs of moderately heavy SrH 
(5+7). 

|Ψ⟩ = eT−T† |Φ0⟩; T = T1 + T2

{tia, tijab} ≡ {θ}



• For quantum hardware computations, we used a suite of resource reduction 
strategies: use of point group symmetry, energy sort VQE procedure, pipeline 
based circuit optimization, RL-based ZX-calculus, cliques to reduce number of 
terms measured in PDM operator, particle number conserving post selection 
scheme. 


• Six qubit result: Accuracy of ~95 percent relative to the best classical 
computations after error mitigation. 


• Twelve qubit result: Accuracy of ~99 percent relative to the best classical 
computations after error mitigation. 

VQE algorithm for relativistic calculations of molecular electric dipole moments  

arXiv 2406.04992 (2024) 



Conclusion

• The VQE algorithm has been successfully used for computing ground state properties of 
lithium-like systems, in particular, ground state energies and hyperfine interactions on 
superconducting and trapped ion quantum computers have been computed.


• Correct trends for relativistic effects have been reproduced. More qubits are needed for 
accurate computations of many-body effects.


• For ground state energies, accuracy of about 99 percent and for hyperfine structure 
constants and accuracy between 60 and 80 percent has been obtained respectively relative 
to the best classical computations on a four-qubit superconducting quantum computer at 
RIKEN.


• For molecular electric dipole moments on IonQ hardware, we obtain ~95 percent and ~99 
percent accuracies relative to the best classical computations for six- and twelve- qubit 
computations respectively using two different versions of IonQ. The circuit optimisation was 
superior for the latter case.



QAE algorithm



Quantum annealing

                  Annealing from  H(t) = f(t)∑
i

σx
i + g(t)HT 0 → T

 (Ising)        HT = ∑
i

hiσz
i + ∑

i<j

Jijσz
i σz

j f(t) : 1 → 0, g(t) : 0 → 1

Kadowaki and Nishimori, Phys Rev E 1998
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Upon 
measurement, we 

get a bitstring 

• . Thus, with  as 
the ground state wave function of the final 
Hamiltonian, an energy functional 

. 


• With , we get the QUBO form: 

. 


• The energy functional: 
 

obtained by using  can be 

expressed in QUBO form via a floating point 
encoding scheme given by 

. 

σZ
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ϵ(λ, HDCB)

Energy functional

⟨Ψ |HDCB |Ψ⟩

Energy

D-Wave Advantage 5000Q 
(Embedding, Annealing)

Optimization

Construct  from qubit 
configuration

|Ψ⟩

Post-Processing

ϵQ

Construct QUBO 
functional

HDCB = HDC + HB

Initialization

⟨Ψ |HDCB |Ψ⟩

Final ground state energy

Quantum annealer



H |Ψ(J = 1/2)⟩ = E1/2 |Ψ(J = 1/2)⟩ H |Ψ(J = 3/2)⟩ = E3/2 |Ψ(J = 3/2)⟩

Computation of Relativistic effects using 
QAE: 

Fine structure splitting for Boron-like ions

Excitation Energy
(Fine Structure Splitting (FSS))

E1/2

E3/2

1s22s22p(L=1,S=½, J =½,3/2)

QAE is applied to J=1/2 and J=3/2 states separately 
on D-Wave quantum annealer  



Results 

Classical computer High precision spectroscopic 
measurement 

D-Wave quantum 
annealer 

 (Kumar et al, Phys Rev A (2024))  



Conclusions and Outlook

➔ We have performed computations of the Fine Structure Splitting in Boron-like ions using the Quantum 
Annealer Eigensolver using D-Wave 5000Q.

➔ We have obtained an accuracy of 99% compared to high precision spectroscopic measurements of 
the fine structure splitting of these ions.

➔ The accuracy was achieved by improving the workflow of the QAE algorithm and inclusion of 
important physical effects. 

➔ This is the first step in carrying out high accuracy quantum annealing computations of atomic 
quantities that have a wide range of applications including the probing of new physical phenomena 
beyond the Standard Model of particle physics.



Asides



Hyperfine structure constant
• The hyperfine Hamiltonian is given by . Thus, . 


• The quantity can be rep as an effective Hamiltonian: , where  is given by 

.  is the nuclear magnetic moment. Thus, 

. 


• . Thus, . 


•  is often a hard quantity to evaluate, since it is determined by a complex interplay of several 
electron correlation effects, unlike the energy. 


• Its computation requires accurate single particle wave functions in the nuclear region, and hence 
computing  is a sensitive test of relativistic and correlation effects in atoms and molecules. 


•

Hhf = ⃗je ⋅ ⃗AN ⟨Ψ |Hhf |Ψ⟩ = ⟨Ψ | ⃗je ⋅ ⃗AN |Ψ⟩

Heff
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μI ∫
f(r)
r3

dV μI

⟨Ψ |Heff
hf |Ψ⟩ = 𝒜⟨Ψ | ⃗I ⋅ ⃗J |Ψ⟩ = 𝒜IJ

⟨Ψ |Hhf |Ψ⟩ = ⟨Ψ |Heff
hf |Ψ⟩ 𝒜 =

⟨Ψ |Hhf |Ψ⟩
IJ

=
1
IJ

μNgII⟨JJ |∑
i

( ⃗ri × ⃗α i)Z

r3
i

|JJ⟩

a

a









QAE: subQUBO

Number of Repeats: 75 (30 for J=1/2 and 45 for J=3/2), QUBO size: 90 and 160, subQUBO size: 
30 (110 qubits) and 40 (190 qubits). Anneal time: 20 microseconds.  
Individual energies: Best agreement with relCI: ~0.05 mHa, and the worst~1 mHa.  



F(r)
Q =
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∑
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∑
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E(r) =
⟨Ψ(r) |H |Ψ(r)⟩

⟨Ψ(r) |Ψ(r)⟩

Final energy: min(energies from all repeats)

Connection between atomic physics and quantum annealing
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i − ∑

i<j

Hijcicj

|Ψ(JMΠ)⟩ = ∑
i

ci |Φi(JMΠ)⟩ c{r}
α = c{r−1}

α + 21 − r
2

K−1

∑
k=0

fk2−kqα
k

Atomic physics module Quantum algorithm module

A(r+1), B(r+1), D(r+1)

Quantum annealing

-QUBO form:   


Suitable on a D-Wave annealer. 

-  are functions of 

. 

∑
i

Qiiqi + ∑
i<j

Qijqiqj

A, B, and D
Hij and λ



Replace the old  with 
the new ones in the set  

{qn}ℒK

{qn}

subQUBO partitioning and choice

QA

FPE
Obtain new set of coefficients, and now 

pick the next top ℒ

{C0, C1, ⋯, Cℬ} {C0, C4, ⋯, C2}

‘Sorting’ via 
perturbation 

theory  has only those 
corresponding to the top 

 coefficients

FQ {qn}

ℒ

The coefficients are unknown; we 
only estimate them based on 

perturbation theory for sorting! 

 ,  ,  . C1 ∼
H10

(H00 − H11)
C2 ∼

H20

(H00 − H22)
⋯

Pick top  
number of 
sorted 

ℒ

{Cα}

The notion of a Repeat. 

Repeat: involves updating  and subQUBO! λ


