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Bose-Fermi mixtures with a tunable BF attraction

e System of bosons of one species interacting with one-component fermions through a
tunable boson-fermion attraction.

e For weak attraction, weakly interacting Bose-Fermi mixture: at sufficiently low
temperature bosons condense, while fermions fill a Fermi sphere.

e For strong attraction bosons pair with fermions to form molecules. Condensation
suppressed in favor of molecule formation. Fermi sphere of molecules coexisting with
Fermi sphere of unpaired fermions for N, =ng-
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e How does the system evolves from one limit to the other one?

e How to describe this evolution?
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Condensed phase of Bose-Fermi mixtures with a pairing interaction
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The model

e Two-component Hamiltonian with attractive contact interaction between bosons and
fermions.
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e Bare contact-interaction strength between bosons and fermions expressed in terms of
the boson-fermion scattering length app.
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e Two-component Hamiltonian with attractive contact interaction between bosons and
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e Bare contact-interaction strength between bosons and fermions expressed in terms of
the boson-fermion scattering length app.
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*No Fermi-Fermi interaction (fermions are identical: short-range interaction
suppressed). Some boson-boson repulsion is required for stability.
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* We focus on systems with np =zn; .
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Green’s functions obtained from the self-energies through Dyson’s equations:

Gp(k)™" = Gp(k)™" — Sp(k)
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Green’s functions obtained from the self-energies through Dyson’s equations:
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Momentum distributions obtained from the Green’s functions:
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Green’s functions obtained from the self-energies through Dyson’s equations:

Gp(k)™" = Gp(k)™" — Sp(k)
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Momentum distributions obtained from the Green’s functions:
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Lines: our diagrammatic calculations
Symbols: FN-DMC by G. Bertaina
Dashed-dotted line: Bogoliubov.
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Ny/Ng

Universality of condensate fraction and boson momentum distribution

npas, =3 X 107 & kpagp 2 0.5
Lines: our diagrammatic calculations

1 ' ' ' ' ' Symbols: FN-DMC by G. Bertaina
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e Condensate fraction vanishes at a critical coupling: quantum phase transition.
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Universality of condensate fraction and boson momentum distribution
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e Condensate fraction vanishes at a critical coupling: quantum phase transition.

e Condensate fraction almost independent of the boson concentration x=ng/n;



Universality of condensate fraction and boson momentum distribution

npas, =3 X 107 & kpagp 2 0.5
Lines: our diagrammatic calculations
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e Condensate fraction vanishes at a critical coupling: quantum phase transition.

e Condensate fraction almost independent of the boson concentration x=ng/n;

e Universality also for the momentum distribution (once normalized by ng ). It suggests:

ng(k)=nyxVn,,(k)=N,xn_ (k)




Comparison with (Fermi) polaron quasiparticle residue Z

Lines: our calculations at four different
concentrations for zero Bose repulsion.

Circles: Diagrammatic MC results
for Z [J. Vlietinck, J. Ryckebusch,
K. Van Houcke, PRB 87, 115133 (2013)]

No/Ng

(kpage)

Polaron problem: single (mobile) impurity interacting with a Fermi sea.
-1

)
Quasiparticle residue for the polaron Z = |1 — ,(—ReZR(k =0,w) where Xy is the
(retarded) self-energy of the impurity. w w=0

Surprising agreement between ‘universal condensate fraction” and Fermi polaron
quasiparticle residue.
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PHYSICAL REVIEW A 83, 041603(R) (2011)

Stability condition of a strongly interacting boson-fermion mixture across
an interspecies Feshbach resonance

Zeng-Qiang Yu,' Shizhong Zhang,? and Hui Zhai'
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e Stability condition calculated for ng/nr << 1 and mgz = m with lowest-order
constrained variational approximation over Jastrow-Slater wave-function.
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Stability condition of a strongly interacting boson-fermion mixture across
an interspecies Feshbach resonance

Zeng-Qiang Yu,' Shizhong Zhang,? and Hui Zhai'
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e Stability condition calculated for ng/nr << 1 and mgz = m with lowest-order
constrained variational approximation over Jastrow-Slater wave-function.

e BB repulsion required for stability of BF mixture at unitarity more than one order
of magnitude larger than BB repulsion in the experiment.
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Stability from compressibility matrix

Or  Opr

We have studied the stability by calculating the compressibility matrix Y Onp Ong

within our diagrammatic approach.

We have improved the
description of BB repulsion from
Bogoliubov:

21131 = 8mnoass/ms
Zéz = 4nngagg/mg

to Popov:
21131 = 87rnBaBB /mB

12
ZB = 47rn0aBB /mB

This improvement leads to
negligible differences in the
condensate fraction and
momentum distributions, but to
significant differences in the
stability when ny is small.
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C. Gualerzi, L. Pisani, P. Pieri (in preparation)
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mg/Me=0.57 for 23Na-4%K mixture.

A repulsion kpagg 2 0.5 would be
required to guarantee stability for all
values of (kpagp)™'.

Collapse did not occur during the
timescale of the experiment:

- metastable long-lived many-body
phase!
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Boson-fermion pairing and condensation in two-dimensional Bose-Fermi mixtures

Leonardo Pisani,"? Pietro Bovini,"*2 Fabrizio Pavan,’ and Pierbiagio Pieri':2
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Motivation for the 2D case

2D confinement provides an extra knob: BB repulsion could be controlled by varying the
confinement length (confinement induced resonance) while the BF attraction is varied
with a (3D) Feshbach resonance, or vice versa.

14



e 2D confinement provides an extra knob: BB repulsion could be controlled by varying the
confinement length (confinement induced resonance) while the BF attraction is varied
with a (3D) Feshbach resonance, or vice versa.

eFermi-Bose dimers could be a platform to realize a p-wave superfluid according to a
proposal by Bazak & Petrov:

PHYSICAL REVIEW LETTERS 121, 263001 (2018)

Stable p-Wave Resonant Two-Dimensional Fermi-Bose Dimers

B. Bazak' and D.S. Petrov’

We consider two-dimensional weakly bound heterospecies molecules formed in a Fermi-Bose mixture
with attractive Fermi-Bose and repulsive Bose-Bose interactions. Bosonic exchanges lead to an
intermolecular attraction, which can be controlled and tuned to a p-wave resonance. Such attractive
fermionic molecules can be realized in quasi-two-dimensional ultracold isotopic mixtures. We show that
they are stable with respect to the recombination to deeply bound molecular states and with respect to the
formation of higher-order clusters (trimers, tetramers, etc.)
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The model (2d case)

® Two-component Hamiltonian with attractive contact interaction between bosons
and fermions.
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* Bare contact-interaction strength between bosons and fermions expressed in terms of
2D boson-fermion scattering length app .
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The model (2d case)

® Two-component Hamiltonian with attractive contact interaction between bosons
and fermions.

V2
Hgg = Z fdl‘ wi(r) (—2m

s=B,F o

—us)ws (r) +vy" f dr !l (Oy] (OYET)ys(r)

* Bare contact-interaction strength between bosons and fermions expressed in terms of
2D boson-fermion scattering length app .

1 / dk I ,
— = — 9 .2
BE ) 2 eo = 1/(2myagg)
U (2m)° go + T

e Boson-boson short-range (weak) repulsion:
1 | |
H = Hyp + 5 / drdr'Vap (v — v/ )L (r)Y b (r)vp(r))a(r)

e We focus on equal masses my=mj.
Dimensionless coupling strengths in 2D:

ger = — In (kgagp)for the (resonant) BF attraction
1/ |1n (nBa%B)I for the (weak) BB repulsion.
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Like in 3D, condensate fraction and momentum distribution display universal behavior.
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e Like in 3D, condensate fraction and momentum distribution display universal behavior.

e However, in contrast with 3D, the condensate does not exactly vanish beyond a critical
coupling. It remains finite (albeit exponentially small at large BF coupling strength).
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=4 =3 =2 =] | 2 3
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Agreement with polaron residue disappears in 2D.

T-matrix results for Z [R. Schmidt,
T. Enss, V. Pietild, E. Demler,
PRA 85, 021602 (2012)]

Diagrammatic MC results for Z
[J. Vlietinck, J. Ryckebusch, K. Van
Houcke PRB 89, 085119 (2014)]
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Comparison with (Fermi) polaron quasiparticle residue

1.00_ax s srnppy,
. \f.f.l. B T-matrix results for Z [R. Schmidt,
N . T. Enss, V. Pietild, E. Demler.
\ @ . 5 9 9
0.75 ..J PRA 85, 021602 (2012)]
N \ i
-~ ®
20.50 ' - ® Diagrammatic MC results for Z
e - \ = [J. Vlietinck, J. Ryckebusch, K. Van
\o \* Houcke PRB 89, 085119 (2014)]
3
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e Agreement with polaron residue disappears in 2D.

e The T-matrix results for Z (W) are based on the same self-energy as ours when restricted
to the polaron limit - difference between condensate fraction and Z is not due to
different levels of approximation.
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Comparison with (Fermi) polaron quasiparticle residue
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=0.50 a ;
i \ = [J. Vlietinck, J. Ryckebusch, K. Van
\o \l Houcke PRB 89, 085119 (2014)]
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.
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gpr = — In (kpagF)
e Agreement with polaron residue disappears in 2D.

e The T-matrix results for Z (W) are based on the same self-energy as ours when restricted
to the polaron limit - difference between condensate fraction and Z is not due to
different levels of approximation.

e Was the ‘degeneracy’ between condensate fraction and Z found in 3D just accidental?

18
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Conclusions

® Our predictions for condensate fraction as a function of BF attraction in a 3D BF
mixture recently confirmed experimentally by Duda et al. (2023), including the
apparent connection with the polaron quasiparticle residue.
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Conclusions

® Our predictions for condensate fraction as a function of BF attraction in a 3D BF
mixture recently confirmed experimentally by Duda et al. (2023), including the
apparent connection with the polaron quasiparticle residue.

® BB repulsion in experiment was way below the threshold to guarantee mechanical
stability: metastable (nonequilibrium) phase has been observed in the exp, which is
however well described by our equilibrium theory.

® Calculations in 2D confirm ‘universal behavior’ of condensate fraction and bosonic
momentum distribution found in 3D.

® Important differences with respect to 3D: i) ‘degeneracy’ with polaron

quasiparticle residue removed in 2D ii) Quantum phase transition to molecular phase
becomes a (rapid) crossover in 2D.

Thank you!



More material...
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Editors’ Suggestion

Quantum Monte Carlo and perturbative study of two-dimensional Bose-Fermi mixtures

" and Pierbiagio Pieri

Jacopo D’ Alberto®,' Lorenzo Cardarelli ©,> Davide Emilio Galli®,' Gianluca Bertaina
1Dipartimento di Fisica “Aldo Pontremoli”, Universita degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy
2PASQAL, 7 rue Léonard de Vinci, 91300 Massy, France
3Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, I-10135 Torino, Italy
4*Dipartimento di Fisica e Astronomia “Augusto Righi”, Universita di Bologna, Via Irnerio 46, 1-40126, Bologna, Italy
SINFN, Sezione di Bologna, Viale Berti Pichat 6/2, I-40127, Bologna, Italy
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Quantum Monte Carlo + perturbative calculation

- T T " ! T T erubiive — ] Equal masses
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1/gBE

Second-order perturbative calculation valid for
both attractive and repulsive interaction.
QMC performed for repulsive BF mixture.

Perturbative curve works well till line of
instability (and even slightly above it).
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Quantum Monte Carlo + perturbative calculation

I I I I I
Perturbative i
VMC ——i

0.00

-0.01 . .

-0.02 .

(e-emp)/eF

| x =ng/np ~ 0.25

004t 1/|In(npady)| =~ 0.06 :

-0.05 1 1 L L L L L L
0 01 02 03 04 05 06 07 08 09

1/gBF

Second-order perturbative calculation valid for
both attractive and repulsive interaction.
QMC performed for repulsive BF mixture.

Perturbative curve works well till line of
instability (and even slightly above it).

Evidence of boson clustering past the
instability line from the BB pair distribution
function.
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More on perturbative expansion
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Fermion—self-enet gy
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More on perturbative expansion

Fermion-self-energy
5o (k )_ﬂntBF+7Tnt123F | (a+1D?+A(a+1) — 24> 0+ 14 24  4k2 - A2 0| —mo
B =, 2m, | (a+1)2 l 2+l (a+1)?
a+1 lnB(a— 1) — (@ -1)?+2k*> = (@ = D)y/(@ - 1 — B)2 — 4k2 — i0*
a-1 22
gsr = 1/gBr = —1/In(kragr) A=k*-va,B=K*+va v=w/er «k=k/kgp
i ik i
> > > > >
o= (['| + | I
WA Mv M M :
..... P
..... <..o"
Fermion-quasiparticle-residue-atke Fermion-effective mass————
-1
d OReZg(k,
Z(kg) = [1 - = -ReZr (k. a))] 7r_ [1 ? ° ;i )| Zkp)
w w=pF m F k=ke
V2 (@ +1)%2 7~ 1 (a+1)\*_ < R I2xfx + X
Z(ke) =1 - 2O D) e P ( > ) Zaex| | my 8w o 4o 007

Non-analytic dependence due to interplay between Fermi step and condensed bosons.



Comparison with (Fermi) polaron quasiparticle residue Z

Lines: our calculations at four different
concentrations for zero Bose repulsion.

Circles: Diagrammatic MC results
for Z [J. Vlietinck, J. Ryckebusch,
K. Van Houcke, PRB 87, 115133 (2013)]

No/Ng

(kpage)

Surprising agreement between ‘universal condensate fraction’ and Fermi polaron
quasiparticle residue. ‘Explanation’:
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This is the weak step.

ol (k = 0) =por (k = 07) = lim n, (kg)) =, (k) = 2
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Back to the explanation for the connection between ny/ng and Z

pol (k = 0) =npoi (k = 07) - = lim n, (kg)) - n(kg) =Z

This is the weak step.

no/np is defined in the thermodynamic limit: V — oo with #B/RF fixed (no matter how

small we take it). First take V — « and then ng/ng — 0, if interested in the polaron
limit.

So Ng =ngV is always infinite.

For a single impurity instead Ng = 1 from the outset and only then V — oo,
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