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Bose-Fermi mixtures with a tunable BF attraction

• System of bosons of one species interacting with one-component fermions through a 
tunable boson-fermion attraction. 

• For weak attraction, weakly interacting Bose-Fermi mixture: at sufficiently low 
temperature bosons condense, while fermions fill a Fermi sphere.

• For strong attraction bosons pair with fermions to form molecules. Condensation 
suppressed in favor of molecule formation. Fermi sphere of molecules coexisting with 
Fermi sphere of unpaired fermions for              .

€ 

nF ≥ nB
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Fermi sphere of unpaired fermions for              .
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nF ≥ nB

• How does the system evolves from one limit to the other one? 

• How to describe this evolution?

2



3



The model

• Two-component Hamiltonian with attractive contact interaction between bosons and 
fermions. 

• Bare contact-interaction  strength between bosons and fermions expressed in terms of 
the boson-fermion scattering length        .
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• We focus on systems with              .

The model

• Two-component Hamiltonian with attractive contact interaction between bosons and 
fermions. 

• Bare contact-interaction  strength between bosons and fermions expressed in terms of 
the boson-fermion scattering length        .

€ 

nF ≥ nB

• No Fermi-Fermi interaction  (fermions are identical: short-range interaction 
suppressed). Some boson-boson repulsion is required for stability.
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Bosonic and fermionic self-energy diagrams for the condensed phase

Boson self-energy Boson-fermion T-matrix

5



Bosonic and fermionic self-energy diagrams for the condensed phase

Fermion self-energy

Boson self-energy Boson-fermion T-matrix

5



Coupled equations for chemical potentials and condensate density n0

Green’s functions obtained from the self-energies through Dyson’s equations:
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Coupled equations for chemical potentials and condensate density n0

Green’s functions obtained from the self-energies through Dyson’s equations:

Momentum distributions  obtained from the Green’s functions: 
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Coupled equations for chemical potentials and condensate density n0

Green’s functions obtained from the self-energies through Dyson’s equations:

Integration over k + Hugenholtz-Pines relation         coupled eqs. for                : µB, µF,n0

Momentum distributions  obtained from the Green’s functions: 
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Universality of condensate fraction and boson momentum distribution

Lines: our diagrammatic calculations
Symbols: FN-DMC by  G. Bertaina
Dashed-dotted line: Bogoliubov.
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Universality of condensate fraction and boson momentum distribution

• Condensate fraction vanishes at a critical coupling: quantum phase transition.

Lines: our diagrammatic calculations
Symbols: FN-DMC by  G. Bertaina
Dashed-dotted line: Bogoliubov.
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Universality of condensate fraction and boson momentum distribution

• Condensate fraction vanishes at a critical coupling: quantum phase transition.

• Condensate fraction almost independent of the boson concentration x=nB/nF.

Lines: our diagrammatic calculations
Symbols: FN-DMC by  G. Bertaina
Dashed-dotted line: Bogoliubov.
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Universality of condensate fraction and boson momentum distribution

• Condensate fraction vanishes at a critical coupling: quantum phase transition.

• Condensate fraction almost independent of the boson concentration x=nB/nF.

• Universality also for the momentum distribution (once normalized by nB ). It suggests:

Lines: our diagrammatic calculations
Symbols: FN-DMC by  G. Bertaina
Dashed-dotted line: Bogoliubov.
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Polaron problem: single (mobile) impurity interacting with a Fermi sea.

Quasiparticle residue for the polaron                                              where       is the 
(retarded) self-energy of the impurity. 

Surprising agreement between ‘universal condensate fraction’ and Fermi polaron
quasiparticle residue.

Comparison with (Fermi) polaron quasiparticle residue Z

Lines: our calculations at four different
concentrations for zero Bose repulsion.

Circles: Diagrammatic MC results
 for  Z   [J. Vlietinck, J. Ryckebusch,
 K. Van Houcke,  PRB 87, 115133 (2013)]
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23Na-40K Bose-Fermi
mixture with broad
Feshbach resonance
( ).

Our prediction
for n0

Calculation of Z by von Milczewski and
Schmidt
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• Stability condition calculated for nB/nF << 1 and mB = mF with lowest-order
constrained variational approximation over Jastrow-Slater wave-function.
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• Stability condition calculated for nB/nF << 1 and mB = mF with lowest-order
constrained variational approximation over Jastrow-Slater wave-function.

• BB repulsion required for stability of BF mixture at unitarity more than one order
of magnitude larger than BB repulsion in the experiment.



We have improved the
description of BB repulsion from
Bogoliubov:

to Popov:
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Stability from compressibility matrix

We  have studied the stability by calculating the compressibility matrix M   
within our diagrammatic approach. 

C. Gualerzi, L. Pisani, P. Pieri (in preparation)
This improvement leads to
negligible differences in the
condensate fraction and
momentum distributions, but to
significant differences in the
stability when n0 is small.
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Analysis of stability for different mass ratios

C. Gualerzi, L. Pisani, P. Pieri (in preparation)

mB/mF=0.57 for 23Na-40K mixture.

A repulsion would be
required to guarantee stability for all
values of v. .

Collapse did not occur during the
timescale of the experiment:
à metastable long-lived many-body
phase!
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Motivation for the 2D case 

• 2D confinement provides an extra knob: BB repulsion could be controlled by varying the 
confinement length (confinement induced resonance) while the BF attraction is varied 
with a (3D) Feshbach resonance, or vice versa.
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Motivation for the 2D case 

• 2D confinement provides an extra knob: BB repulsion could be controlled by varying the 
confinement length (confinement induced resonance) while the BF attraction is varied 
with a (3D) Feshbach resonance, or vice versa.

•Fermi-Bose dimers could be a platform to realize a p-wave superfluid according to a 
proposal by Bazak & Petrov:



The model (2d case) 

• Two-component Hamiltonian with attractive contact interaction between bosons 
and fermions. 

• Bare contact-interaction  strength between bosons and fermions expressed in terms of  
2D  boson-fermion scattering length       .

15



• We focus on equal masses mF=mB.
                                                             Dimensionless coupling strengths in 2D: 
                         
                                                                               for the (resonant) BF attraction
 
                                                                               for the (weak) BB repulsion.   

The model (2d case) 

• Two-component Hamiltonian with attractive contact interaction between bosons 
and fermions. 

• Bare contact-interaction  strength between bosons and fermions expressed in terms of  
2D  boson-fermion scattering length       .

• Boson-boson short-range (weak) repulsion:
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Bosonic and fermionic self-energy diagrams for the condensed phase

Fermion self-energy
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Boson self-energy Boson-fermion T-matrix
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Universality of condensate fraction and boson momentum distribution

• Like in 3D, condensate fraction and momentum distribution display universal behavior.

gBF = -4

gBF = 0

gBF = -2
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Universality of condensate fraction and boson momentum distribution

• Like in 3D, condensate fraction and momentum distribution display universal behavior.

• However, in contrast with 3D,  the condensate does not exactly vanish beyond a critical 
coupling. It remains finite (albeit exponentially small at large BF coupling strength).

gBF = -4

gBF = 0

gBF = -2



T-matrix  results for  Z  [R. Schmidt, 
      T. Enss, V. Pietilä,   E. Demler,  
      PRA 85, 021602 (2012)]

Diagrammatic MC results for  Z 
          [J. Vlietinck, J. Ryckebusch, K. Van
          Houcke  PRB 89, 085119 (2014)]
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Comparison with (Fermi) polaron quasiparticle residue

• Agreement with polaron residue  disappears in 2D.



T-matrix  results for  Z  [R. Schmidt, 
      T. Enss, V. Pietilä,   E. Demler,  
      PRA 85, 021602 (2012)]

Diagrammatic MC results for  Z 
          [J. Vlietinck, J. Ryckebusch, K. Van
          Houcke  PRB 89, 085119 (2014)]

18

Comparison with (Fermi) polaron quasiparticle residue

• Agreement with polaron residue  disappears in 2D.

• The T-matrix results for Z (   ) are based on the same self-energy as ours when restricted 
to the polaron limit à difference between condensate fraction and Z is not due to 
different levels of approximation.
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Comparison with (Fermi) polaron quasiparticle residue

• Agreement with polaron residue  disappears in 2D.

• The T-matrix results for Z (   ) are based on the same self-energy as ours when restricted 
to the polaron limit à difference between condensate fraction and Z is not due to 
different levels of approximation.

• Was the ‘degeneracy’ between condensate fraction and Z found in 3D just accidental? 
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Conclusions 

• Our predictions for condensate fraction as a function of BF attraction in a 3D BF
mixture recently confirmed experimentally by Duda et al. (2023), including the
apparent connection with the polaron quasiparticle residue.
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Conclusions 

• Our predictions for condensate fraction as a function of BF attraction in a 3D BF
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• BB repulsion in experiment was way below the threshold to guarantee mechanical 
stability: metastable (nonequilibrium) phase has been observed in the exp, which is 
however well described by our equilibrium theory.
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Conclusions 

• Our predictions for condensate fraction as a function of BF attraction in a 3D BF
mixture recently confirmed experimentally by Duda et al. (2023), including the
apparent connection with the polaron quasiparticle residue.

• BB repulsion in experiment was way below the threshold to guarantee mechanical 
stability: metastable (nonequilibrium) phase has been observed in the exp, which is 
however well described by our equilibrium theory.

• Calculations in 2D confirm ‘universal behavior’ of condensate fraction and bosonic
momentum distribution found in 3D.

• Important differences with respect to 3D: i) ‘degeneracy’ with polaron
quasiparticle residue removed in 2D ii) Quantum phase transition to molecular phase 
becomes a (rapid) crossover in 2D.

Thank you!
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More material...
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Quantum Monte Carlo + perturbative calculation

Second-order perturbative calculation valid for 
both attractive and repulsive interaction.
QMC performed for repulsive BF mixture.

Generic mass ratio   

Equal  masses   

Perturbative curve works well till line of 
instability (and even slightly above it).
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Quantum Monte Carlo + perturbative calculation

Second-order perturbative calculation valid for 
both attractive and repulsive interaction.
QMC performed for repulsive BF mixture.

Generic mass ratio   

Equal  masses   

Perturbative curve works well till line of 
instability (and even slightly above it).

Evidence of boson clustering past the 
instability line from the BB pair distribution 
function. 
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More on perturbative expansion

Fermion self-energy

Fermion effective massFermion quasiparticle residue at kF
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More on perturbative expansion

Fermion self-energy

Fermion effective massFermion quasiparticle residue at kF

Non-analytic dependence due to interplay between Fermi step and condensed bosons. 



Surprising agreement between ‘universal condensate fraction’ and Fermi polaron
quasiparticle residue. ‘Explanation’:

Comparison with (Fermi) polaron quasiparticle residue Z

Lines: our calculations at four different
concentrations for zero Bose repulsion.

Circles: Diagrammatic MC results
 for  Z   [J. Vlietinck, J. Ryckebusch,
 K. Van Houcke,  PRB 87, 115133 (2013)]
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Back to the explanation for the connection between n0/nB and Z
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is defined in the thermodynamic limit: with fixed (no matter how
small we take it). First take and then , if interested in the polaron
limit.

So is always infinite.

For a single impurity instead from the outset and only then .
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