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2D Quantum Compass Model
  - Bond-Directional Interactions
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Directional Interactions
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Early Eighties: Compass Models

I. Kugel’ and D. I. Khomskii, Superexchange ordering of
degenerate orbitals and magnetic structure of dielectrics with

jahn–teller ions, JETP Letters 15, 446 (1972).

Ising interactions that depend on the bond direction

Review: Compass models.
Z. Nussinov, J.v.d. Brink
RMP 87, 1 (2015)
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Conserved Quantities
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Quantum Compass Models (sq lattice) Dorier, Becca, Mila PRB 72, 024448 (2005). Doucot et al PRB (2005) 

Row product Column product

All eigen-states are at least 2-fold degenerate. In thermodynamic limit GS is 2x2L degenerate.

J>0, matters for non-zero h

Equivalent to Xu-Moore model
(Nussinov, Fradkin PRB 2005) 

Which can be mapped to the toric
code in a transverse field
(Vidal et al, PRB 2009)

Nussinov, Ortiz, Cobanera, Ann. Phys. 2012
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Fault-tolerant quantum computation by anyons

A.Yu. K itaev*

L.D. Landau Institute for Theoretical Physics, 117940, Kosygina St. 2, Germany

Received 20 M ay 2002

Abstract

A two-dimensional quantum system with anyonic excitations can be considered as a quan-

tum computer. Unitary transformations can be performed by moving the excitations around

each other. M easurements can be performed by joining excitations in pairs and observing the

result of fusion. Such computation is fault-tolerant by its physical nature.

Ó 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A quantum computer can provide fast solution for certain computational prob-

lems (e.g., factoring and discrete logarithm [1]) which require exponential time on

an ordinary computer. Physical realizat ion of a quantum computer is a big challenge

for scientists. One important problem isdecoherence and systematic errors in unitary

transformations which occur in real quantum systems. From the purely theoretical

point of view, this problem has been solved due to ShorÕs discovery of fault-tolerant

quantum computation [2], with subsequent improvements [3–6]. An arbitrary quan-

tum circuit can be simulated using imperfect gates, provided these gates are close to

the ideal ones up to a constant precision d. Unfortunately, the threshold value of d is

rather small;1 it is very difficult to achieve this precision.

Needless to say, classical computation can be also performed fault-

tolerantly. However, it is rarely done in practice because classical gates are reliable

enough. Why is it possible? Let us try to understand the easiest thing—why classical

Annals of Physics 303 (2003) 2–30

www.elsevier.com/locate/aop

* Present address: Caltech 107-81, Pasadena, CA 91125, USA.

E-mail addresses: kitaev@itp.ac.ru, kitaev@cs.caltech.edu.
1 Actually, the threshold is not known. Estimates vary from 1/300 [7] to 10 6 [4].
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Anyons in an exactly solved model and beyond
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Abstract

A spin-1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors

areof XX, YY or ZZ type, depending on thedirection of the link; different types of interactions may

differ in strength. The model is solved exactly by a reduction to free fermions in a static Z2 gauge

field. A phase diagram in the parameter space is obtained. One of the phases has an energy gap

and carries excitations that are Abelian anyons. The other phase is gapless, but acquires a gap in

the presence of magnetic field. In the latter case excitations are non-Abelian anyons whose braiding

rules coincide with those of conformal blocks for the Ising model. Wealso consider a general theory

of free fermions with a gapped spectrum, which is characterized by a spectral Chern number m. The

Abelian and non-Abelian phasesof the original model correspond to m= 0 and m= ± 1, respectively.

The anyonic properties of excitation depend on mmod 16, whereas mitself governs edge thermal

transport. The paper also provides mathematical background on anyons as well as an elementary

theory of Chern number for quasidiagonal matrices.

Ó 2005 Elsevier Inc. All rights reserved.

1. Comments to the contents: what is this paper about?

Certainly, the main result of the paper is an exact solution of a particular two-dimen-

sional quantum model. However, I wassitting on that result for too long, trying to perfect

it, derivesomepropertiesof themodel, and put them into a moregeneral framework. Thus

many ramifications have come along. Some of them stem from the desire to avoid the use

of conformal field theory, which is more relevant to edge excitations rather than the bulk

0003-4916/$ - see front matter Ó 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.aop.2005.10.005

* Fax: +1 626 5682764.

E-mail address: kitaev@iqi.caltech.edu.
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The two-dimensional toric code

The toric code is an exact ly solvable spin 1/ 2 model on the square lat t ice. It exhibits a

ground state degeneracy of 4g when embedded on a surfaceof genusg and a quasipart i-

cle spect rum with both bosonic and fermionic sectors. Although we will not int roduce

it as such, the model can be viewed as an Ising gauge theory at a part icularly simple

point in parameter space (see Sec. 4.5). Many of the topological features of the toric

code model were essent ially understood by Read and Chakraborty (1989), but they

did not propose an exact ly solved model. A more detailed exposit ion of the toric code

may be found in Kitaev (2003).

We consider a square lat t ice, possibly embedded into a nontrivial surface such as

a torus, and place spins on the edges, as in Fig. 3.1. The Hamiltonian is given by

HT = − Je

s

As − Jm

p

Bp (3.1)

where s runs over the vert ices (stars) of the lat t ice and p runs over the plaquet tes.

The star operator acts on the four spins surrounding a vertex s,

Bp

As

F ig. 3.1 A piece of the toric code. The spins live on the edges of the square lat t ice. The

spins adjacent to a star operator A s and a plaquet te operator B p are shown.
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The honeycomb lat t ice model

We now invest igatethe propert ies of another exact ly solvablespin model in two dimen-

sions, the honeycomb lattice model. This model exhibits a number of gapped phases

that are perturbat ively related to the toric code of the previous sect ions. Moreover, in

the presence of t ime-reversal symmetry breaking terms, a new topological phase arises

with different topological propert ies, including nont rivial spectral Chern number. An

extended treatment of the propert ies of this model with much greater detail can be

found in K itaev (2006).

In the honeycomb lat t ice model, the degrees of freedom are spins living on the

vert ices of a honeycomb lat t icewith nearest neighbor interact ions. The unusual feature

of this model is that the interact ions are link orientat ion dependent (see Fig. 5.1). The

Hamiltonian is

H = − Jx

x l inks

σx
j σ

x
k − Jy

y l inks

σ
y
j σ

y
k − Jz

z l inks

σz
j σ

z
k (5.1)

We might expect this model to be integrable because [H , Wp] = 0 for an extensive

collect ion of plaquette operators
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F ig. 5.1 The honeycomb model has spins living on the vert ices of a honeycomb lat t ice

with nearest neighbor interact ions that are link-orientat ion dependent . x-links have σxσx

interact ions, y-links have σyσy interact ions and z-links have σzσz interact ions.
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𝛂-RuCl3

Hickey, Trebst, Nat. Phys. (2019).

Kasahara, Nature 559, 227 (2018)

Quantized (or not quantized) thermal hall effect..
PA Lee www.condmatjclub.org Nov 2021

LETTERS NATURE PHYSICS

When H  b (Sample 2, green circles), similar behaviour is obtained, 
with the low-field slope Sf also at 30.6 T. However, the high-field 

slope is steeper with Sf = 64.2 T. As shown in Fig. 1b,c, the periods 
are independent of T from 0.43 K to 4.5 K.

Taken together, the data shown in Fig. 2a–d provide strong evi-
dence that the oscillations are intrinsic and reproducible across 
samples. The five datasets shown in Fig. 2a were derived from 
extrema of the derivative curves d xx/dB displayed in Fig. 2b. The 
profiles show the close agreement in both period and phase between 
Samples 1 and 3. The matching of the extrema is especially evident 
in Fig. 2c, which also shows that periodicity versus H (as opposed 
to 1/H) can be excluded. In Sample 2, the period and phase also 
agree with those of Samples 1 and 3 for H < 7 T (the period is shorter 
above 7 T, as noted already).

Oscillations observed with H tilted in the a–c plane (at an angle 
 relative to a) provide tests in an independent direction. Figure 

2c shows curves of xx measured in Sample 1 with  = 0°, 39° and 
55° (curves of xx at various T are in Extended Data Fig. 4a,b). By  
plotting the curves versus Ha = H cosθ, we find that the periods 
match quite well (with a possible phase shift for the curve at 55°). 
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Fig. 1 | Quantum oscillations in the QSL phase in -RuCl3 (Sample 1). a, The phase diagram showing the QSL phase (shaded red and orange) sandwiched 

between the zigzag (purple) and polarized states (navy blue) with H a (axes a and b shown in inset). The ZZ2 phase that lies between critical fields 

Bc1 and Bc2 is outlined by the blue dashed curve17. The yellow region is the paramagnetic state. The inset shows the zigzag order (red and blue arrows are 

local moments on Ru). b, The emergence of oscillations in xx(H) (H a) as T falls below 4 K (coloured curves). Here, H is multiplied by the magnetic 

permeability constant 0. Data were recorded using the stepped-field technique to correct for magnto-caloric effects (Methods). c, The oscillations over 

the full field range at selected T (coloured curves). The data were recorded continuously, as well as with the stepped-field method. At around 11T, xx 

displays a step increase to a plateau-like profile in the polarized state in which oscillations are strictly absent. d, The derivative curves d( xx/ T)/dB for a 

range of T (coloured curves) show that the oscillations onset abruptly at 4 T. The large derivative peak centred at around 11.3T corresponds to the step 

increase in xx mentioned, and is not par t of the oscillation sequence. Arrows indicate the relevant axes for the quantity plotted. The amplitude amp (solid 

circles) is strikingly prominent in the QSL state. Its profile (shaded orange) distinguishes the QSL from adjacent phases. A weak remnant tail extends 

below 7T to 4 T in the zigzag state.

Table 1 | Dimensions of the four crystals investigated

Sample Length 

Ls ( m)

Width 

w ( m)

Thickness d 

( m)

Separation 

ws ( m)

H

1 860 2,870 60 1,870 a, = 39°, 

55°

2 400 1,500 50 800 b

3 1,060 2,760 80 – a

4 870 1,700 30 700 = 45°

Ls is the separation of longitudinal contact pads, w is the crystal width and ws the separation of the 

transverse (Hall) contact pads. In the last column, H is either a or b, or at angle  relative to a in 

the a–c plane. Sample 4 is considerably thinner than the other s.

NATURE PHYSICS | VOL 17 | AUGUST 2021 | 915–919 | www.nature.com/ naturephysics916

Czajka et al Nature Physics, 17, 915 (2021)
ArXiv:2201.0787
“incompatible with half-quantization of κxy/T”

Kitaev Honeycomb Experiments

Numerics
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2d Quantum compass model is the simplest 2D model with bond-directional interactions
-  What phases are possible in a magnetic field
-  What excitations.
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Exact Ground-States for PBC 

At Write Hamiltonian as  

Positive Semidefinite

RPMBT22 Sep 23, 2024 11

With PBC in can absorb the field term

Just need to find states where the positive Hp
 gives 0 !!

Decorate the lattice to obtain a classical product state 

Only possible due to the 
Bond-directional interactions

Only works for low co-ordination
For instance, not the 3D QCM
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2 degenerate classical product states should occur for any value of S=1/2,1,3/2,2,…. at h*

For a Lx by Lz lattice exact for finite lattice with Lx and Lz even !

Extreme Ising state Zero entanglement Coupling Term is cancelled
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2D Quantum Compass model in-plane magnetic field hx=hz

Exactly solvable point
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Magnetization, staggered vector chirality

Magnetization versus in-plane field for a 4x6 periodic lattice.  (no Steps)
Exactly solvable point
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ED Energy Gaps 2D Quantum Compass models  hx=hz=hxz

Exactly solvable pointGapless

Two-Fold degenerate GS

(GS not shown)



iPEPS Results
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Bond Correlators

Y. Motoyama, T. Okubo, K. Yoshimi, S. Morita, T. 

Kato, N. Kawashima,
TeNeS: Tensor network solver for quantum lattice 

systems, Computer Physics Communications, 279 (2022)
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2D Quantum Compass Model



Excitations: What can we learn from
one Dimension = Kitaev Spin Chain
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F ig. 5.1 The honeycomb model has spins living on the vert ices of a honeycomb lat t ice

with nearest neighbor interact ions that are link-orientat ion dependent . x-links have σxσx

interact ions, y-links have σyσy interact ions and z-links have σzσz interact ions.
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the presence of magnetic field. In the latter case excitations are non-Abelian anyons whose braiding

rules coincide with those of conformal blocks for the Ising model. We also consider a general theory

of free fermions with a gapped spectrum, which is characterized by a spectral Chern number m. The

Abelian and non-Abelian phases of the original model correspond to m= 0 and m= ± 1, respectively.

The anyonic properties of excitation depend on mmod 16, whereas mitself governs edge thermal

transport. The paper also provides mathematical background on anyons as well as an elementary

theory of Chern number for quasidiagonal matrices.

Ó 2005 Elsevier Inc. All rights reserved.

1. Comments to the contents: what is this paper about?

Certainly, the main result of the paper is an exact solution of a particular two-dimen-

sional quantum model. However, I was sitting on that result for too long, trying to perfect

it, derive someproperties of themodel, and put them into a more general framework. Thus

many ramifications have come along. Some of them stem from the desire to avoid the use

of conformal field theory, which is more relevant to edge excitations rather than the bulk

0003-4916/$ - see front matter Ó 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.aop.2005.10.005

* Fax: + 1 626 5682764.

E-mail address: kitaev@iqi.caltech.edu.

Annals of Physics 321 (2006) 2–111

www.elsevier.com/locate/aop

h=0 and h=(0,0,h) solvable. No phase transitions
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Phase Diagram, S=1/2

Critical line
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FIG. 4. iDMRG resultswith S=1 for thebond-parity operator hWl i
and itsderivatehWl i

0 asafunction of hx y / S at anangleφx y = ⇡ / 8

in thehx , hy plane shown alongside finite DMRG results with PBC
for the spin gap, ∆ pbc for N =60. A smooth evolution with hx y is

evident and no transition isobserved.

with ? denoting complex conjugation and χ the bond dimen-
sion. Finally, if inversion is considered, one again finds that
the trivial phase factor OI =1. This is in contrast to the Hal-
dane phase of the S=1 spin chain where it is known that
OZ2⇥Z2

=−1, OT R=−1 in addition to anon-trivial phase fac-
tor of OI =−1 when considering inversion [75, 76]. For S=1
we can illustrate the trivial nature of the ground-state of the
Kitaev chain at h=0 by adding an easy-plane crystal field
term, D of the form D

P
j (Sz

j )2 to the h=0 Hamiltonian to
obtain

HD = K
X

j

Sx
2j + 1Sx

2j + 2 + S
y
2j + 2S

y
2j + 3 + D

X

j

(Sz
j )2.

(18)
Note that, the D-term preserves the symmetries present at
h=0 in Eq. (1). In the D ! 1 limit, the ground-state of
Eq. (18) is the trivial product-state |0i |0i |0i . . .. Wecan now
study the evolution of HD as D is increased from zero. In
Fig. 3 weshow iDMRG results for hWl i which remain acon-
stant hWl i=1 for any D . Thegap ∆ pbc increases with D and
never approaches zero, likewise, theenergy susceptibility χe

D

quickly goesmonotonically to zero. Theevolution issmooth,
and no transition isobserved, consistent with thetrivial nature
of the ground-state at h=0. Without breaking the symmetry,
wehaveconnected the two states. Thisdefines what issome-
timescalled asymmetry protected trivial phase [77, 78] (SPt)
or alternatively atrivial SPT phase [79].

It is known that any SPT phase can be connected to the
same trivial product state if we break the symmetry [71, 72,
80, 81]. In our determination of the phase diagram in sec-
tion IV A this turns out to be an important point since, as al-
ready shown in Fig. 1, the soliton phases appear as isolated
islands within the polarized state implying that a path can be
found between theh=0 and hxy=1 ground-states without an
intervening phasetransition. Wenotethat, incontrast to theD
termdiscussed above, theintroduction of afield termat agen-
eral angle will break most symmetries present in the Hamil-

tonian, Eq. (1). For S=1 we can demonstrate the absence
of a transition by calculating hWl i and ∆ pbc as a function
of hxy which should interpolate smoothly between h=0 and
the largefield limit where thesimple product state associated
with complete field polarization is the ground-state. iDMRG
results for such acalculation areshown in Fig. 4 wherehWl i
is graphed versus hxy / S along with finite DMRG results for
the spin gap, ∆ pbc for N =60. The calculations are done at a
fixed angleφxy=⇡ / 8 shown as the dotted blue line in Fig. 1,
that does not intersect with the soliton phase for S=1. As is
clear from theresults in Fig 4 theevolution issmooth, and no
transition is observed, although some structure in hWl i

0 can
beobserved in theproximity of thesoliton phasewhere∆ pbc

also has aminimum. In summary, for S=1 we therefore con-
clude that theh=0 phase isasymmetry protected trivial (SPt)
phase. Once the field is applied in a general direction, the
symmetry is broken, and there is no distinction between the
SPt andpolarized states. However, along theuniquedirections
hx = ± hy a transition to the soliton phase is possible since
the chain is still protected by the combined symmetry opera-
tion of a rotation on each site by ⇡ around thefield direction,
Rxy=exp(i⇡ (Sx + Sy )/

p
2), followedby atranslation by one

lattice spacing, T. Weexpect this to hold for all integer S but
thehalf-integer case is distinct, as discussed in [37] for S=1

2
,

since the Rxy ⌦T symmetry protection allow for a critical
line to be present along the hx = ± hy symmetry directions,
connecting thesoliton phase to h=0.

I I I . NUMERICAL METHODS

In the following we present results mainly obtained from
finite size density matrix renormalization group [82–87]
(DMRG) using both periodic (PBC) and open (OBC) bound-
ary conditions as well as from infinite DMRG [87, 88]
(iDMRG) techniques. For the iDMRG calculations, we use
a unit cell of either 12 or 24 sites. We note that well con-
verged iDMRG results should yield results in the thermody-
namic limit freeof finite-sizeeffectsindependent of thesizeof
theunit cell. Typical precisions for both DMRG and iDMRG
are✏< 10− 11 with a bond dimension in excess of 1000. In
order to establish thephase diagram, we focus on the follow-
ing susceptibilities. With e0 theground-state energy per spin,
wedefine theenergy susceptibilities

χe
h = −

@2e0

@h2
, χe

φx y
= −

@2e0

@φ2
xy

, χe
✓z

= −
@2e0

@✓2
z

(19)

where h is the field strength and φxy and✓z the field angles.
Here, χe

h is effectively a magnetic susceptibility. At a quan-
tum critical point (QCP) it isknown [89] that, for afinitesys-
tem of sizeN , theenergy susceptibility divergesas

χe ⇠ N 2/⌫− d− z . (20)

Here⌫and z are the correlation and dynamical critical expo-
nents and d is thedimension. Wesee that χe only diverges at
the phase transition if the critical exponent ⌫is smaller than
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FIG. 4. iDMRG resultswith S=1 for thebond-parity operator hWl i

and itsderivatehWl i
0 asafunction of hx y / S at anangleφx y = ⇡ / 8

in thehx , hy plane shown alongside finite DMRG results with PBC

for the spin gap, ∆ pbc for N =60. A smooth evolution with hx y is
evident and no transition isobserved.

with ? denoting complex conjugation and χ the bond dimen-
sion. Finally, if inversion is considered, one again finds that
the trivial phase factor OI =1. This is in contrast to the Hal-
dane phase of the S=1 spin chain where it is known that
OZ2⇥Z2

=−1, OT R=−1 in addition to anon-trivial phase fac-
tor of OI =−1 when considering inversion [75, 76]. For S=1
we can illustrate the trivial nature of the ground-state of the
Kitaev chain at h=0 by adding an easy-plane crystal field
term, D of the form D

P
j (Sz

j )2 to the h=0 Hamiltonian to
obtain
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Note that, the D-term preserves the symmetries present at
h=0 in Eq. (1). In the D ! 1 limit, the ground-state of
Eq. (18) is the trivial product-state |0i |0i |0i . . .. Wecan now
study the evolution of HD as D is increased from zero. In
Fig. 3 weshow iDMRG results for hWl i which remain acon-
stant hWl i=1 for any D . Thegap ∆ pbc increases with D and
never approaches zero, likewise, theenergy susceptibility χe

D

quickly goesmonotonically to zero. Theevolution issmooth,
andno transition isobserved, consistent with thetrivial nature
of the ground-state at h=0. Without breaking the symmetry,
wehaveconnected the two states. Thisdefines what issome-
timescalled asymmetry protected trivial phase [77, 78] (SPt)
or alternatively atrivial SPT phase [79].

It is known that any SPT phase can be connected to the
same trivial product state if we break the symmetry [71, 72,
80, 81]. In our determination of the phase diagram in sec-
tion IV A this turns out to be an important point since, as al-
ready shown in Fig. 1, the soliton phases appear as isolated
islands within the polarized state implying that a path can be
found between theh=0 and hxy=1 ground-states without an
interveningphasetransition. Wenotethat, incontrast to theD
termdiscussed above, theintroduction of afield termat agen-
eral angle will break most symmetries present in the Hamil-

tonian, Eq. (1). For S=1 we can demonstrate the absence
of a transition by calculating hWl i and ∆ pbc as a function
of hxy which should interpolate smoothly between h=0 and
the largefield limit where thesimple product state associated
with complete field polarization is the ground-state. iDMRG
results for such acalculation are shown in Fig. 4 wherehWl i
is graphed versus hxy / S along with finite DMRG results for
the spin gap, ∆ pbc for N =60. The calculations are done at a
fixed angleφxy=⇡ / 8 shown as the dotted blue line in Fig. 1,
that does not intersect with the soliton phase for S=1. As is
clear from theresults in Fig 4 theevolution issmooth, and no
transition is observed, although some structure in hWl i

0 can
beobserved in theproximity of thesoliton phasewhere∆ pbc

also has aminimum. In summary, for S=1 wetherefore con-
cludethat theh=0 phase isasymmetry protected trivial (SPt)
phase. Once the field is applied in a general direction, the
symmetry is broken, and there is no distinction between the
SPt andpolarized states. However, alongtheuniquedirections
hx = ± hy a transition to the soliton phase is possible since
the chain is still protected by the combined symmetry opera-
tion of a rotation on each site by ⇡ around thefield direction,
Rxy=exp(i⇡ (Sx + Sy )/

p
2), followedby atranslation by one

lattice spacing, T. Weexpect this to hold for all integer S but
thehalf-integer case isdistinct, asdiscussed in [37] for S=1

2
,

since the Rxy ⌦T symmetry protection allow for a critical
line to be present along the hx = ± hy symmetry directions,
connecting thesoliton phase to h=0.

I I I . NUMERICAL METHODS

In the following we present results mainly obtained from
finite size density matrix renormalization group [82–87]
(DMRG) using both periodic (PBC) and open (OBC) bound-
ary conditions as well as from infinite DMRG [87, 88]
(iDMRG) techniques. For the iDMRG calculations, we use
a unit cell of either 12 or 24 sites. We note that well con-
verged iDMRG results should yield results in the thermody-
namic limit freeof finite-sizeeffectsindependent of thesizeof
theunit cell. Typical precisions for both DMRG and iDMRG
are✏< 10− 11 with a bond dimension in excess of 1000. In
order to establish thephasediagram, we focus on the follow-
ing susceptibilities. With e0 theground-state energy per spin,
wedefine theenergy susceptibilities
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where h is the field strength and φxy and✓z the field angles.
Here, χe

h is effectively a magnetic susceptibility. At a quan-
tum critical point (QCP) it isknown [89] that, for afinitesys-
tem of sizeN , theenergy susceptibility divergesas

χe ⇠ N 2/⌫− d− z . (20)

Here⌫and z are thecorrelation and dynamical critical expo-
nentsand d is thedimension. Wesee that χe only divergesat
the phase transition if the critical exponent ⌫is smaller than
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FIG. 2. Energy gap ∆ to thefirst 10 energy levelsabovetheground-

state(not shown) versus1/ N at hx y = 0.7. (a) ED resultswith PBC
for even N = 12-36 (orange points). Note the twice degenerate

ground-state below a well defined gap. The dashed line indicates
∆ PB C = 0.02962K . Two soliton variational results (red points).

(b) ED resultswith OBC for N = 12− 36 (bluepoints). Variational
estimates for the lowest gaps in the space of single defects (green

lines) and with { 0, 1, 2} defects (red points). (c) ED results for the
ground-state energy versus N at hx y =0.7, for OBC (blue) and PBC

(red).

cally performed with abond dimension larger than 1,000 and

a✏< 10− 10. Subsequently, we describe our variational cal-

culations valid in thechiral soliton phase.

PhaseDiagram: In thepresenceof afield in thez-direction

the Kitaev chain, Eq. (1) is exactly solvable and it is known

that thesystem immediately enters thepolarized state (PS) [8]

directly. The integrability is lost when the field is applied

in the x- or equivalently the y-direction and the situation is

lessclear. Wehavetherefore studied thecorrelation functions

C(r )=hSx
1 Sx

r + 1i for small fields in the x-direction. For hx =0

apower-law isfound, C(r )⇠r − 0.25(1) , asshown in [16], how-

ever, for any non-zero hx an exponential decay is observed

with aresulting finitegap [16]. Thepolarized state is then en-

tered directly for any non-zero hx and by symmetry for any

non-zero hy .

Next westudy thephasediagram for fields in theentirex-y

plane, Fig. 1(a). Although difficult to establish numerically,

our results indicate that for φxy =45◦ the Kitaev chain remain

gapless up to a critical field, hc1
xy =0.511K where a new un-

expected phase is entered, marked by ‘S’ . We determine the

phaseboundary for thisphase by studying theenergy suscep-

tibility χe
φx y

=−@2e0/ @φ2
xy which scales as N 2/⌫− (d+ z) at a

quantum critical point [17]. Here, e0 is the energy per site

and⌫, z the correlation and dynamical exponents. The solid

bluepointsdenoteresults from N =24 ED whereχe
φx y

ismax-

imal. The position of these peaks are confirmed by iDMRG

(solid red points) as illustrated in the inset, Fig. 1(b). The

open circles denote crossover due to incommensurability ef-

fectswhere theposition of theED peak cannot bereproduced
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FIG. 3. (a)-(d) Finite chain DMRG results for the on-site mag-
netization hSx

i i , hS
y
i i versus position, i , for a N = 384 site chain

with OBC at different field strengths. (a) hx y = 0.51 < hc1, (b)
hx y = 0.55 (c) hx y = 0.70 (d) hx y = 0.75 > hc2

x y . Only odd sites

areshown.

with iDMRG and isstrongly finite-size dependent. Thephase

extends out of the x-y plane to non-zero ✓z [16]. At a 45◦

angleanother quantum critical point isobserved at thecritical

field hc2
xy =0.726K wherethechain transitions fromthesoliton

phase to thepolarized state.

The gapless phase, extending from zero field to hc1
xy at a

45◦ angle, is acritical line. For φxy 6= 45◦ , or ✓z 6= 0, a gap

opens up and the chain enters the PS phase. The S phase is

characterized by anon-zero staggered vector chirality, X ↵ :

X ↵ = (− 1) j h(Sj ⇥Sj + 1)↵ i . (2)

While X x ,y =0 in theSphase X z6= 0 asshown in Fig. 1(c). In

the context of of the anisotropic J1-J2 model with J1 < 0,

J2 > 0 [18–20] phases with non-zero X ↵ have been found

and recently observed in thes=1
2

chain LiCuVO4 [21].

To understand the nature of the unexpected S phase we

focus on the spectrum of excitations. Using ED for chain

sizes ranging from N =12-36 at hxy =0.7,φxy =45◦ ,✓z=0◦ re-

sults for thegap to the10 lowest states areshown in Fig. 2(a)

for PBC (orange points) and Fig. 2(b) for OBC (blue points).

For PBC there are two almost degenerate states that become

degenerate as N ! 1 below awell defined but small gap of

∆ PBC=0.02962K . For PBC we determine the momentum of

the lowest excited state above the 2 degenerate ground-states

to beat k = 0. For OBC the spectrum is more intriguing. As

seen in Fig. 2(b) the spectrum evolves smoothly with N for

both even and odd N . While it is possible to identify ∆ PBC

in the spectrum for OBC an increasing number of states ap-

pear below thisgap, quickly approaching theground-state en-

S-phase also extends out of the hx,hy plane
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Unusual Spectrum
from ED
• PBC is gapped

• OBC appears gapless

• OBC lowers the energy !

• hxy=0.7 Inside Soliton 
Phase

ED

ED

Gap for PBC is ~ 0.03 K
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Solitons:  OBC

• Only every second point is shown

• DMRG Results – Almost Exact
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Topological Soliton, connecting 2 degenerate ground-states



Asymmetry 
Lowers Energy

Raises Energy more

At h* all bond operators are 0
Zeeman term on site I lowers energy

bond operators [i-1,i] and [I,i+1]
Very costly, Zeeman term on 
site I cannot compensate

Soliton

Anti-Soliton

Variational Picture
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Remember all bond interactions are AF

Removed YY-Bond !



Variational Subspace OBC

11

in this case transitioning from the X 0Y 0 to the Y0X 0 pattern
at bond i . Asdiscussed, in thiscasethedefects arenow rather
costly since since the y0

i y0 now occurs on a y-bond and the
x0

i x0 on a x-bond. The defect states,  b and  B are slight
variations of the bond defects considered for the S=1

2
Kitaev

chain in Ref. [37] and are slightly more optimal for S ≥ 1.
However, since all such basis states are non-orthogonal the
final results depend relatively little on the specific choice of
basis states.

With thestates  b and  B defined wecan form linear com-
binations of these single defect states and perform a varia-
tional calculation within the single defect subspace. As illus-
trated in Fig. 7(a), the entanglement is very low within the
soliton phase and we therefore expect such linear combina-
tions to yield very reliable results within the soliton phase.
Explicitly, wedefine thevariational states:

| bi =

NX

k= 1

ak | b(k)i , | B i =

N − 1X

l = 2

gl | B (l)i . (38)

We refer to these states as soliton and anti-soliton states to
distinguish them from the individual basis states | b(i )i and
| B (i )i which werefer to asdefect statesor basisstates. Cor-
respondingly, wedistinguish between soliton energiesand de-
fect energies when referring to the energy of the linear com-
bination and individual basis state. We also note that for  B

we exclude the sites l=1,N since their overlap with the lower
energy |Y 0X 0i and |X 0Y 0i states isan inconvenience.

The determination of the variational coefficients, ak and
gl is a straight forward optimization problem. Since the ba-
sis states are non-orthonormal the minimum can be found by
solving the generalized eigenvalue problem (see appendix A)
in terms of thematrices

Hk l = h b(k)|H | b(l)i and M k l = h b(k)| b(l)i , (39)

which can be solved by standard methods. The solution of
the generalized eigenvalue problem, Eq. (39), determines the
variational optimized ground-states,  b,  B in the sub-space
formed by | b(i )i and | B (i )i .

Having defined thesingledefect states | b(i )i , | B (i )i it is
straight forward to extend the variational calculations to two-
defect bB states relevant for PBC by considering:

| bB (i , j )i = | y0 % i x0 y0 x0 y0 % j x0 y0 x0i ,

(40)
and defining two-soliton states of the form:

| bB i =
X

i 6= j

ai ,j | bB (i , j )i . (41)

Similar variational two-soliton states have previsously been
considered for the J1-J2 S=1

2
chain [61] and S=1

2
Kitaev

chain [37]. It is convenient to include the |Y 0X 0i and |X 0Y 0i
states in thevariational sub-space for PBC and thevariational
gap to two-soliton states ∆ var

2sol can then be directly obtained
from the the eigenvalues of Eq. (39). For PBC we expect
∆ var

2sol of thespin gap, ∆ pbc
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FIG. 10. hS↵
i i from finite size DMRG results (open circles) with

N =100 for theS=1 and S=2 Kitaev spin chains, compared to varia-
tional results (solid circles ) for the one soliton state  b. To empha-

size thepresence of thesoliton only odd sitesareshown. (a) Results
for S=1 at hx y / K =1.3. (b) Results for S=2 at hx y / K =2.6. (c) Vari-

ational amplitudes |ak |2 for S=1. (d) Variational amplitudes |cl |
2 for

S=2.
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FIG. 11. hS↵
i i for the S=1 chain at h?

x y from variational calcula-
tions for the excited soliton state n  b. (a) Results for first excited

state 1  b, compared to finite size DMRG results (open circles) for
hSx

i i dmr g (b) Results for second excited state 2  b. (c) Results for

third excited state 3 b.

A. Var iational results for S=1

We first discuss our results for S=1. Representative nu-
merical results for a few values of hxy and N are collected
in table I. The first check on the variational results is to di-
rectly compare theenergy obtained with results from DMRG.

Basis states are non-orthogonal: Generalized eigenvalue problem

Watch Out !

Dense Matrices

J1-J2 chain: Shastry, Sutherland, Phys. Rev. Lett. 47, 964 (1981)
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The Soliton Masses: From Variational and DMRG 
Calculations.

Spin Gap for PBC

4
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FIG. 5. (a)hSx
i i and hS

y
i i on odd sites from DMRG calculations

on a N = 120 site open chain compared to the variational results

hSx
i i  b

, hSx
i i  b

in the variational soliton state  b at hx y = 0.7,
φx y =45◦ . (b)hSx
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, hSx
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on odd sites in thevariational ‘anti’-

soliton state  B . (c) |ak |2 versusk for the  b state. (d) |cl |
2 versus

l for the B state.

eigenvalueproblemcanbesolvedusingstandard methodsand

theoptimal  b and  B determined.

Variational Results: Solving the generalized eigenvalue

problem yields a series of states for  b and  B . With OBC

we expect the lowest  b state to be a good approximation

to the ground-state. This is illustrated in Fig. 5(a),(c) where

the variational results for hS
x,y
i i  b

are compared to finite

chain DMRG results for a system with N =120 at hxy=0.7.

We find EDM RG=−29.9169 while E b
=−29.9019 less than

0.05% higher. For comparison, the defect free Y0X 0 state

has an energy EY 0X 0=−29.6975 significantly higher and the

soliton has therefore lowered the energy with respect to the

Y0X 0state. However, for the ‘anti’ -soliton state B shown in

Fig. 5(b),(d) weinstead find E B
=−29.4520 above theY0X 0

state. Using the defect free Y0X 0 state as reference we can

now estimate the energy difference (mass) for the two states

at hxy=0.7: ∆ b=−0.2044K compared to −0.2085K from

DMRG in Fig. 4(a) and ∆ B =0.2455K which cannot be de-

termined fromDMRGnor ED. A similar asymmetry hasbeen

noted intheRice-Melemodel [23] andthenonsymmomorphic

symmetry [24] present also in theKitaev spin chain could be

crucial.

For PBC the ground-state in the soliton phase is well de-

scribed by the degenerate and defect-free Y0X 0 and X 0Y0

states. While for OBC the number of solitons, nsol , can be

both even and odd, with PBC it is not possible to consider

a single soliton, they have to come in a bB pair or multiple

pairs, 0,bB ,bBbB ,. . ., with nsol even. This explains the gap

seen in Fig 2(a) since to afirst approximation weexpect that

∆ PBC = ∆ b + ∆ B , (8)

which wouldpredict agap for PBCof 0.0411K fromthevari-

ational results. For OBC thegap to the lowest bBbstate from

the b ground-state should then also be equal to ∆ PBC which

agrees with the results in Fig 2(b). Wethen extend the varia-

tional calculations to two-defect bB statesby considering:

| bB (i , j )i = |y0 x0
i x0 y0 x0 y0 x0

j x0 y0 x0i ,

(9)

and defining two-soliton statesof theform:

| bB i =
X

i 6= j

ai ,j | bB (i , j )i . (10)

If we include the Y0X 0 and X 0Y0 states in the variational

calculation, extending the subspace to {0, 2} defects, we

find at hxy=0.7 a gap of ∆ var
P B C =0.04289K (red circles in

Fig. 2(a)), in qualitative agreement with the ED result of

∆ PBC=0.02962K and close to ∆ b+∆ B . We expect the in-

clusion of multiplepairsof defects in thevariational subspace

to further improvetheagreement. Wecan now intuitively un-

derstand thetransition at hc1
xy . At thispoint ∆ b=−∆ B and the

cost of abB pair becomeszero. Asisclearly seen in Fig. 3(a)

a number of bB pairs then condense into the single soliton

ground-state in this case creating abBbBbstate. As thefield

is increased the solitons then effectively evaporate. On the

other hand, the transition at hc2
xy occurs due to the closing of

thegap to spin-waveexcitations.

The solution of the generalized eigenvalue problem leads

not only to thevariational ground-state  b but also aseriesof

excitations of these states, i  b which are in good agreement

with results for excited statesobtained from DMRG [16]. For

OBC, thesestatescorrespond tostatic excitationsof thesingle

soliton present in the system [25]. As the system size is in-

creased theexcited states gradually fill in thegap in thespec-

trum. The variationally determined gaps obtained from the

single defect states, Eq. (5) are shown as the green lines in

Fig. 2(b). For short chainswith OBC wecan extend thevaria-

tional subspace in Eq. (7) to include {0, 1, 2} defectswith the

resulting gaps shown as red circles in Fig. 2(b) significantly

improving theagreement with theED results for short chains.

Discussion: In parallel with studies of solitons in conduct-

ing polymers [26], magnetic solitons havebeen studied since

the late seventies [27–32] with signatures observed experi-

mentally [33] in the 1D easy-plane ferromagnetic chain sys-

tem CsNiF3 aswell as the1D AF materials TMMC [34, 35],

CsCoBr3 [36] and CsMnBr3 [37] among others. The excita-

tions of interest here are topological solitons linking distin-

guishable ground-states [22]. Building on this picture, do-

main walls between degenerate ground-states in dimerized

spin chains, such as thes=1
2
, J1-J2 model, havebeen viewed

assolitons[38–43] andobservedexperimentally inBiCu2PO6

above a critical field [44]. Comparing periodic (PBC) and

open (OBC) boundary conditions, a positive mass, ∆ s, has

then been defined [41–43] for both thesoliton andanti-soliton

in thedimerized phasewith well defined spin, s=1
2
.

Incontrast, for theKitaev chainwefindherethat thesoliton

mass, ∆ b isnegative, lowering theenergy in thesoliton phase,
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to the ground-state. This is illustrated in Fig. 5(a),(c) where
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are compared to finite

chain DMRG results for a system with N =120 at hxy=0.7.

We find EDM RG=−29.9169 while E b
=−29.9019 less than

0.05% higher. For comparison, the defect free Y0X 0 state

has an energy EY 0X 0=−29.6975 significantly higher and the

soliton has therefore lowered the energy with respect to the

Y0X 0state. However, for the ‘anti’ -soliton state  B shown in

Fig. 5(b),(d) weinstead find E B
=−29.4520 above theY0X 0

state. Using the defect free Y0X 0 state as reference we can

now estimate the energy difference (mass) for the two states

at hxy=0.7: ∆ b=−0.2044K compared to −0.2085K from

DMRG in Fig. 4(a) and ∆ B =0.2455K which cannot be de-

termined fromDMRGnor ED. A similar asymmetry hasbeen

noted in theRice-Melemodel [23] andthenonsymmomorphic

symmetry [24] present also in the Kitaev spin chain could be

crucial.

For PBC the ground-state in the soliton phase is well de-

scribed by the degenerate and defect-free Y0X 0 and X 0Y0

states. While for OBC the number of solitons, nsol , can be

both even and odd, with PBC it is not possible to consider

a single soliton, they have to come in a bB pair or multiple

pairs, 0,bB ,bBbB ,. . ., with nsol even. This explains the gap

seen in Fig 2(a) since to afirst approximation weexpect that

∆ PBC = ∆ b + ∆ B , (8)

which would predict agap for PBCof 0.0411K fromthevari-

ational results. For OBC thegap to the lowest bBbstate from

the b ground-state should then also be equal to ∆ PBC which

agrees with the results in Fig 2(b). We then extend the varia-

tional calculations to two-defect bB states by considering:

| bB (i , j )i = |y0 x0
i x0 y0 x0 y0 x0

j x0 y0 x0i ,

(9)

and defining two-soliton states of theform:

| bB i =
X

i 6= j

ai ,j | bB (i , j )i . (10)

If we include the Y0X 0 and X 0Y0 states in the variational

calculation, extending the subspace to { 0, 2} defects, we

find at hxy=0.7 a gap of ∆ var
P B C =0.04289K (red circles in

Fig. 2(a)), in qualitative agreement with the ED result of

∆ PBC=0.02962K and close to ∆ b+∆ B . We expect the in-

clusion of multiplepairsof defects in thevariational subspace

to further improvetheagreement. Wecan now intuitively un-

derstand thetransition at hc1
xy . At thispoint ∆ b=−∆ B and the

cost of abB pair becomes zero. Asisclearly seen in Fig. 3(a)

a number of bB pairs then condense into the single soliton

ground-state in this case creating abBbBbstate. As the field

is increased the solitons then effectively evaporate. On the

other hand, the transition at hc2
xy occurs due to the closing of

thegap to spin-waveexcitations.

The solution of the generalized eigenvalue problem leads

not only to thevariational ground-state  b but also aseriesof

excitations of these states, i  b which are in good agreement

with results for excited statesobtained from DMRG [16]. For

OBC, thesestatescorrespond tostatic excitationsof thesingle

soliton present in the system [25]. As the system size is in-

creased theexcited states gradually fill in thegap in thespec-

trum. The variationally determined gaps obtained from the

single defect states, Eq. (5) are shown as the green lines in

Fig. 2(b). For short chainswith OBC wecan extend thevaria-

tional subspace in Eq. (7) to include { 0, 1, 2} defects with the

resulting gaps shown as red circles in Fig. 2(b) significantly

improving theagreement with theED results for short chains.

Discussion: In parallel with studies of solitons in conduct-

ing polymers [26], magnetic solitons havebeen studied since

the late seventies [27–32] with signatures observed experi-

mentally [33] in the 1D easy-plane ferromagnetic chain sys-

tem CsNiF3 as well as the 1D AF materials TMMC [34, 35],

CsCoBr3 [36] and CsMnBr3 [37] among others. The excita-

tions of interest here are topological solitons linking distin-

guishable ground-states [22]. Building on this picture, do-

main walls between degenerate ground-states in dimerized

spin chains, such as thes=1
2
, J1-J2 model, havebeen viewed

assolitons[38–43] andobservedexperimentally inBiCu2PO6

above a critical field [44]. Comparing periodic (PBC) and

open (OBC) boundary conditions, a positive mass, ∆ s, has

then been defined [41–43] for both thesoliton and anti-soliton

in thedimerized phasewith well defined spin, s=1
2
.

Incontrast, for theKitaev chain wefindherethat thesoliton

mass, ∆ b isnegative, lowering theenergy in thesoliton phase,
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FIG. 2. Energy gap∆ to thefirst 10energy levelsabovetheground-

state(not shown) versus1/ N at hx y = 0.7. (a) ED resultswith PBC
for even N = 12-36 (orange points). Note the twice degenerate

ground-state below a well defined gap. The dashed line indicates
∆ PBC = 0.02962K . Two soliton variational results (red points).

(b) ED resultswith OBCfor N = 12− 36 (bluepoints). Variational
estimates for the lowest gaps in the space of single defects (green

lines) and with { 0, 1, 2} defects (red points). (c) ED results for the
ground-state energy versus N at hx y =0.7, for OBC (blue) and PBC

(red).

cally performed with abond dimension larger than 1,000 and

a✏< 10− 10. Subsequently, we describe our variational cal-

culations valid in thechiral soliton phase.

PhaseDiagram: In thepresenceof afield in thez-direction

the Kitaev chain, Eq. (1) is exactly solvable and it is known

that thesystem immediately entersthepolarized state(PS) [8]

directly. The integrability is lost when the field is applied

in the x- or equivalently the y-direction and the situation is

lessclear. Wehavethereforestudied thecorrelation functions

C(r )=hSx
1 Sx

r + 1i for small fields in thex-direction. For hx =0

apower-law isfound, C(r )⇠r− 0.25(1) , asshownin[16], how-

ever, for any non-zero hx an exponential decay is observed

with aresulting finitegap [16]. Thepolarized state isthen en-

tered directly for any non-zero hx and by symmetry for any

non-zero hy .

Next westudy thephasediagram for fields in theentirex-y

plane, Fig. 1(a). Although difficult to establish numerically,

our results indicate that for φxy=45◦ theKitaev chain remain

gapless up to a critical field, hc1
xy=0.511K where a new un-

expected phase is entered, marked by ‘S’. We determine the

phaseboundary for thisphaseby studying theenergy suscep-

tibility χe
φx y

=−@2e0/ @φ2
xy which scales as N 2/⌫− (d+ z) at a

quantum critical point [17]. Here, e0 is the energy per site

and⌫, z the correlation and dynamical exponents. The solid

bluepointsdenoteresults fromN=24ED whereχe
φx y

ismax-

imal. The position of these peaks are confirmed by iDMRG

(solid red points) as illustrated in the inset, Fig. 1(b). The

open circles denote crossover due to incommensurability ef-

fectswheretheposition of theED peak cannot bereproduced
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FIG. 3. (a)-(d) Finite chain DMRG results for the on-site mag-
netization hSx

i i , hS
y
i i versus position, i , for a N = 384 site chain

with OBC at different field strengths. (a) hx y = 0.51 < hc1, (b)
hx y = 0.55 (c) hx y = 0.70 (d) hx y = 0.75 > hc2

x y . Only odd sites

areshown.

with iDMRG and isstrongly finite-size dependent. Thephase

extends out of the x-y plane to non-zero ✓z [16]. At a 45◦

angleanother quantum critical point isobserved at thecritical

fieldhc2
xy=0.726K wherethechain transitionsfromthesoliton

phaseto thepolarized state.

The gapless phase, extending from zero field to hc1
xy at a

45◦ angle, isacritical line. For φxy 6= 45◦ , or ✓z 6= 0, agap

opens up and the chain enters the PS phase. The S phase is

characterized by anon-zero staggered vector chirality, X ↵ :

X ↵ = (−1)j h(Sj ⇥Sj + 1)↵ i . (2)

WhileX x,y=0 in theSphaseX z6= 0 asshown in Fig. 1(c). In

the context of of the anisotropic J1-J2 model with J1 < 0,

J2 > 0 [18–20] phases with non-zero X ↵ have been found

and recently observed in thes=1
2

chain LiCuVO4 [21].

To understand the nature of the unexpected S phase we

focus on the spectrum of excitations. Using ED for chain

sizes ranging from N =12-36 at hxy=0.7,φxy=45◦ ,✓z=0◦ re-

sults for thegap to the10 lowest statesareshown in Fig. 2(a)

for PBC (orange points) and Fig. 2(b) for OBC (bluepoints).

For PBC there are two almost degenerate states that become

degenerate asN ! 1 below awell defined but small gap of

∆ PBC=0.02962K . For PBC wedetermine themomentum of

the lowest excited state above the 2 degenerate ground-states

to beat k = 0. For OBC thespectrum ismore intriguing. As

seen in Fig. 2(b) the spectrum evolves smoothly with N for

both even and odd N . While it is possible to identify ∆ PBC

in the spectrum for OBC an increasing number of states ap-

pear below thisgap, quickly approaching theground-stateen-

Compared to DMRG

RPMBT22 Sep 23, 2024 25

9

0 200 400 600i

− 0.009

− 0.003

0.000

(h
e i

i
−

eb
u

lk

0
)/

S
2

ξS

ξS

S = 1

S = 2

FIG. 8. Finite size DMRG results with N =600 for the S=1 (blue)
and S=2 (red) Kitaev spin chainsshowing therelativeenergy density

(hei i − ebulk
0 )/ S2 versusposition, i , in thechain. Resultsareshown

for hx y / K =1.32(S = 1) and hx y / K =2.60(S = 2)

D. Soliton Mass, ∆ b and Width,⇠S

Thevariational calculation of thesoliton mass for OBC de-
scribed in section II A 1 and VI relies on a subtractive proce-
dure where the energy of the single soliton state is measured
with respect to theisotropic product state. For amoredetailed
understanding of theDMRG results it isuseful to haveamore
refined measure of ∆ b that does not involve a subtraction. In
theabsenceof SU(2) symmetry and awell defined spin for the
soliton it is then necessary to focus on the local bond energy
density which wedefineastheenergy of thebond [i , i + 1] plus
1/ 2 thefield termson thesites i and i + 1. Far away from the
soliton the energy density attains a constant value ebulk

0 and
weexpect that thisbulk energy density is essentially identical
to theenergy density of the two fold degenerate ground-states
with PBC. It is then instructive to study the following quan-
tity:

hei i − ebulk
0 (25)

This is shown in Fig. 8 where hei i − ebulk
0 is plotted versus

i for hx y / K =1.32 (S=1) and 2.60 (S=2), showing a sharply
localized soliton. Furthermore, the soliton ’sharpens’ with in-
creasing S, displaying a smaller spatial extent. We can now
simply define thesoliton mass, ∆ b, asthe integrated deviation
from ebulk

0 in the following manner:

∆ b =
X

i

hei i − ebulk
0 . (26)

Clearly, this measures by how much the soliton has lowered
the total energy which was our original definition of the soli-
ton mass, ∆ b.

From high precision DMRG calculations with OBC on
N = 1200 sites for a range of hx y we can now extract ∆ b for
both S=1 and S=2. Our results are illustrated in Fig. 9(a)
where ∆ b/ S2 is shown as a function of hx y . As one might
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FIG. 9. Finite size DMRG results with N =1200 for the S=1 and
S=2 Kitaev spin chains. The dashed lines indicate the critical fields

hc1
x y and hc2

x y . (a) The soliton mass, ∆ b/ S2 EE versus the field
strength hx y / S. (b) Thesoliton size⇠S versus hx y / S.

expect, ∆ b is roughly proportional to S2, consistent with clas-
sical modelsof solitons [48], and with only amodest variation
throughout the soliton phase. In contrast to the variational re-
sults for ∆ var

b shown in Fig. 2 the DMRG results in Fig. 9(a)
show that ∆ b tends to zero at hc1

x y and hc2
x y . From the defini-

tion, Eq. (26) it follows that ∆ b=0 outside the soliton phase
where we expect the energy density to be uniform. In con-
trast, thevariational states  b can never yield auniform energy
density, and wehaveto usealess refined measure for thesoli-
ton mass. However, it is still useful to compare the estimates
at h?

x y , where we from DMRG for S=1 find ∆ b= − 0.7457
and from the variational calculations ∆ var

b =− 0.7225, in good
agreement.

Theenergy profiles shown in Fig. 8 can beused to estimate
the size of the soliton, ⇠S by simply measuring at what dis-
tance |hei i − ebulk

0 | has decreased by a factor of 1/ e from the
maximum. Measures of ⇠S are indicated on Fig. 8. Using this
definition of ⇠S we have determined the size of the soliton
throughout the soliton phase from high precision DMRG cal-
culations with OBC on N =1200 sites for both S=1 and S=2.
The results are shown in Fig. 9(b). Through most of the soli-
ton phase⇠S remains roughly constant at around 120 lattice
spacings for S=1 and approximately 60 lattice spacings for
S=2, before increasing dramatically close to hc1

x y and hc2
x y .

V. UNIFORM PRODUCT STATES

As already discussed in section II A the product states
|YX i and |X Y i play a crucial role in our understanding of
the soliton phase. For ✓z=0, φx y =⇡ / 4 at h?

x y they are ex-
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in this case transitioning from the X 0Y0 to the Y 0X 0 pattern
at bond i . Asdiscussed, in thiscasethedefects arenow rather
costly since since the y0

i y0 now occurs on a y-bond and the
x0

i x0 on a x-bond. The defect states,  b and  B are slight
variations of the bond defects considered for the S=1

2
Kitaev

chain in Ref. [37] and are slightly more optimal for S ≥ 1.
However, since all such basis states are non-orthogonal the
final results depend relatively little on the specific choice of
basis states.

With thestates  b and  B defined wecan form linear com-
binations of these single defect states and perform a varia-
tional calculation within the single defect subspace. As illus-
trated in Fig. 7(a), the entanglement is very low within the
soliton phase and we therefore expect such linear combina-
tions to yield very reliable results within the soliton phase.
Explicitly, wedefine thevariational states:

| bi =

NX

k= 1

ak | b(k)i , | B i =

N − 1X

l= 2

gl | B (l)i . (38)

We refer to these states as soliton and anti-soliton states to
distinguish them from the individual basis states | b(i )i and
| B (i )i which werefer to asdefect statesor basisstates. Cor-
respondingly, wedistinguish between soliton energiesand de-
fect energies when referring to the energy of the linear com-
bination and individual basis state. We also note that for  B

we exclude the sites l=1,N since their overlap with the lower
energy |Y0X 0i and |X 0Y0i states isan inconvenience.

The determination of the variational coefficients, ak and
gl is a straight forward optimization problem. Since the ba-
sis states are non-orthonormal the minimum can be found by
solving the generalized eigenvalue problem (see appendix A)
in terms of thematrices

Hk l = h b(k)|H | b(l)i and M k l = h b(k)| b(l)i , (39)

which can be solved by standard methods. The solution of
the generalized eigenvalue problem, Eq. (39), determines the
variational optimized ground-states,  b,  B in the sub-space
formed by | b(i )i and | B (i )i .

Having defined thesingledefect states | b(i )i , | B (i )i it is
straight forward to extend the variational calculations to two-
defect bB states relevant for PBC by considering:

| bB (i , j )i = | y0 % i x0 y0 x0 y0 % j x0 y0 x0i ,

(40)
and defining two-soliton states of the form:

| bB i =
X

i 6= j

ai ,j | bB (i , j )i . (41)

Similar variational two-soliton states have previsously been
considered for the J1-J2 S=1

2
chain [61] and S=1

2
Kitaev

chain [37]. It is convenient to include the |Y0X 0i and |X 0Y0i
states in thevariational sub-space for PBC and thevariational
gap to two-soliton states ∆ var

2sol can then be directly obtained
from the the eigenvalues of Eq. (39). For PBC we expect
∆ var

2sol of thespin gap, ∆ pbc
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N =100 for the S=1 and S=2 Kitaev spin chains, compared to varia-
tional results (solid circles ) for the one soliton state  b. To empha-

size thepresence of thesoliton only odd sitesareshown. (a) Results
for S=1 at hx y / K =1.3. (b) Results for S=2 at hx y / K =2.6. (c) Vari-

ational amplitudes |ak |2 for S=1. (d) Variational amplitudes |cl |
2 for

S=2.
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A. Var iational results for S=1

We first discuss our results for S=1. Representative nu-
merical results for a few values of hxy and N are collected
in table I. The first check on the variational results is to di-
rectly compare theenergy obtained with results from DMRG.
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in this case transitioning from the X 0Y 0 to the Y 0X 0 pattern
at bond i . Asdiscussed, in thiscase thedefects arenow rather
costly since since the y0

i y0 now occurs on a y-bond and the
x0

i x0 on a x-bond. The defect states,  b and  B are slight
variations of the bond defects considered for the S=1

2
Kitaev

chain in Ref. [37] and are slightly more optimal for S ≥ 1.
However, since all such basis states are non-orthogonal the
final results depend relatively little on the specific choice of
basis states.

With thestates  b and  B defined wecan form linear com-
binations of these single defect states and perform a varia-
tional calculation within the single defect subspace. As illus-
trated in Fig. 7(a), the entanglement is very low within the
soliton phase and we therefore expect such linear combina-
tions to yield very reliable results within the soliton phase.
Explicitly, wedefine thevariational states:

| bi =

NX

k= 1

ak | b(k)i , | B i =

N − 1X

l = 2

gl | B (l)i . (38)

We refer to these states as soliton and anti-soliton states to
distinguish them from the individual basis states | b(i )i and
| B (i )i which werefer to asdefect states or basisstates. Cor-
respondingly, wedistinguish between soliton energiesand de-
fect energies when referring to the energy of the linear com-
bination and individual basis state. We also note that for  B

we exclude the sites l=1,N since their overlap with the lower
energy |Y 0X 0i and |X 0Y 0i states is an inconvenience.

The determination of the variational coefficients, ak and
gl is a straight forward optimization problem. Since the ba-
sis states are non-orthonormal the minimum can be found by
solving the generalized eigenvalue problem (see appendix A)
in terms of thematrices

H k l = h b(k)|H | b(l)i and M k l = h b(k)| b(l)i , (39)

which can be solved by standard methods. The solution of
the generalized eigenvalue problem, Eq. (39), determines the
variational optimized ground-states,  b,  B in the sub-space
formed by | b(i )i and | B (i )i .

Having defined thesingledefect states | b(i )i , | B (i )i it is
straight forward to extend the variational calculations to two-
defect bB states relevant for PBC by considering:

| bB (i , j )i = | y0 % i x0 y0 x0 y0 % j x0 y0 x0i ,

(40)
and defining two-soliton states of the form:

| bB i =
X

i 6= j

ai ,j | bB (i , j )i . (41)

Similar variational two-soliton states have previsously been
considered for the J1-J2 S=1

2
chain [61] and S=1

2
Kitaev

chain [37]. It is convenient to include the |Y 0X 0i and |X 0Y 0i
states in thevariational sub-space for PBC and thevariational
gap to two-soliton states ∆ var

2sol can then be directly obtained
from the the eigenvalues of Eq. (39). For PBC we expect
∆ var

2sol of thespin gap, ∆ pbc
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A. Var iational results for S=1

We first discuss our results for S=1. Representative nu-
merical results for a few values of hxy and N are collected
in table I. The first check on the variational results is to di-
rectly compare theenergy obtained with results from DMRG.

Variational Results : Gap with PBC

J1-J2 chain: Shastry, Sutherland, Phys. Rev. Lett. 47, 964 (1981)
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Unusual Spectrum
from ED
• PBC is gapped

• OBC appears gapless

• OBC lowers the energy !

• hxy=0.7 Inside Soliton 
Phase

2 soliton bB 

1 soliton b states 1+2 soliton b states

ED

ED
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- Exact Ground-States in a field 
- Surrounding Gapped Phase
- Single Soliton ground-states in 1D with OBC
- Thanks !

RPMBT22 Sep 23, 2024 29

• ADS. Richards, ESS, arXiv:2310.01384 
• ESS,  J. Ridell,  H.-Y. Kee, Phys. Rev. Research 5, 013210 (2023)
• ESS, J. Gordon, J. Ridell, T. Yang, H.-Y. Kee, Phys. Rev. Research 5, L012027 (2023)

• ESS, A Catuneanu, JS Gordon, HY Kee Physical Review X 11 (1), 011013 (2021)

Open Questions:
- Experimental Realization Ba2IrO4 ? 
- Rigourous proof of Gap ?
- Excitations (Generalization of Solitons ?)
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