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Directional Interactions

Early Eighties: Compass Models
Review: Compass models.
|. Kugel' and D. |. Khomskii, Superexchange ordering of Z. Nussinov, J.v.d. Brink
degenerate orbitals and magnetic structure of dielectrics with RMP 87,1 (2015)
jahn—teller ions, JETP Letters 15, 446 (1972).
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Ising interactions that depend on the bond direction
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Conserved Quantities

H:JZ(sf r—|—em—|_Sz r—I—ez)_Z °SI"

r
>0, matters for non-zero h

€T Nussinov, Ortiz, Cobanera, Ann. Phys. 2012
P; = 11, 1o Q; =110 . .
17,9 ¢ J7,]

Equivalent to Xu-Moore model
(Nussinov, Fradkin PRB 2005)

Row product Column product Which can be mapped to the toric
code in a transverse field
(Vidal et al, PRB 2009)

All eigen-states are at least 2-fold degenerate. In thermodynamic limit GS is 2x2- degenerate.

Quantum Compass Models (sq lattice) Dorier, Becca, Mila PRB 72, 024448 (2005). Doucot et al PRB (2005)
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Why should we care ?
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Kitaev Honeycomb Model

Kz
Fault-tolerant quantum computation by anyons Anyons in an exactly solved model and beyond o
A.Yu. Kitaev* Alexe Kitaev * /\
Kx+Kz+Ky = const.

L.D. Landau Ingtitute for Theoretical Physics, 117940, Kosygina St. 2, Germany California Ingtitute of Technology, Pasadena, CA 91125, USA \\'\/

Received 20 M ay 2002 Received 21 October 2005; accepted 25 October 2005 / : \\
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A two-dimensional quantum system with anyonic excitations can be considered as a quan-
tum computer. Unitary transformations can be performed by moving the excitations around
each other. M easurements can be performed by joining excitations in pairs and observing the
result of fusion. Such computation is fault-tolerant by its physical nature.

Annals of Physics 303 (2003) 2-30
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A spin-1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors
areof XX, YY or ZZ type, depending on the direction of the link; different types of interactions may
differ in strength. The model is solved exactly by a reduction to free fermions in a static Z, gauge

Annals of Physics 321 (2006) 2-111
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Kugel’, Khomskil, Sov. Phys Uspekhi (1982) Quantum Compass Models (sq lattice) Dorier, Becca, Mila PRB 72, 024448 (2005). Doucot et al PRB (2005)
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= Kitaev Honeycomb o-RUCI3  experiments
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i PL A
o2l PRL 102, 017205 (2009) PHYSICAL REVIEW LETTERS 9 JANUARY 3009
Mott Insulators in the Strong Spin-Orbit Coupling Limit:
From Heisenberg to a Quantum Compass and Kitaev Models

G. Jackeli"* and G. Khaliullin'

'Max-Planck-Institut fiir Festkirperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
(Received 21 August 2008; published 6 January 2009)
Quantized (or not quantized) thermal hall effect..

PA Lee www.condmatjclub.org Nov 2021
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/hou et al ArX|V220104597, Nat Commun 14, 5613 (2023)
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Magnetic Field (T) FIG. 4. The field-angle phase diagram that summarizes the

values of transition fields determined from both the exper-
imental (black and grey solid markers) and the calculated
data (red open ones). We also plot the low-field results (blue
stars) taken from Ref. [43] as a supplement. The zigzag an-
tiferromagnetic, paramagnetic (PM), and the quantum spin
liquid (QSL) phases are indicated.
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Why should we care ?

2d Quantum compass model is the simplest 2D model with bond-directional interactions
- What phases are possible in a magnetic field
- What excitations.




The Exact Ground-States
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With PBC in can absorb the field term
At h?; — h* — 92.J5 Write Hamiltonian as

H = JZ (SESE ., +5282,.) =) h-§;

‘ Only possible due to the
H = Hp — 2NJS2 Bond-directional interactions

Hy=J > (8= 87) (8= Sie) +(S = 8)(S = 5]

r | ]
Y
Positive Semidefinite

Just need to find states where the positive H. gives 0 1! Decorate the lattice to obtain a classical product state
) Il

e

For instance, not the 3D QCM
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H:JZ(SIQE I:I'j—|—€m —I_Sj §+ez)_zh'sr
| S | | °
—‘X>—‘Z>_‘X>—|Z>—

I

—z) —|x) —|2) —|x) - :-
CE
—|x) —|z) —|x) —|z) = h,

2 degenerate classical product states should occur for any value of S=1/2,1,3/2,2,.... at h”

For a Lx by Lz lattice exact for finite lattice with Lx and Lz even !

Extreme Ising state Zero entanglement Coupling Term is cancelled
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2D Quantum Compass model in-plane magnetic field hx=hz
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Exactly solvable point

13
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Magnetization, staggered vector chirality
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Magnetization versus in-plane field for a 4x6 periodic lattice. (no Steps) Exactly solvable point
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ED Energy Gaps 2D Quantum Compass models hx=hz=hxz

Py Two-Fold degenerate GS

(GS not shown)

0.0 0.5 1.0 15 20

Gapless Exactly solvable point



IPEPS Results

Y. Motoyama, T. Okubo, K. Yoshimi, S. Morita, T.
Kato, N. Kawashima,

TeNeS: Tensor network solver for quantum lattice

systems, Computer Physics Communications, 279 (2022)
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Bond Correlators
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2D Quantum Compass Model
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Excitati
one Di

ons: What can we learn fro

mension = Kitaev Chair
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Kitaev Honeycomb Model

Anyons in an exactly solved model and beyond B = J. E S;?SZ‘ + Jy E S;’SZ + J, E SjS,i
Alexa Kitaev * x links y links z links
California Ingtitute of Technology, Pasadena, CA 91125, USA
Received 21 October 2005; accepted 25 October 2005 X X X X X
Z Z Z Z Z VA

Abstract

A spin-1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors
areof XX, YY or ZZ type, depending on the direction of the link; different types of interactions may
differ in strength. The model is solved exactly by a reduction to free fermions in a static Z, gauge

Annals of Physics 321 (2006) 2-111

H =K Z (5254155512 + S5;425513) — Z h-5;
J

h = h(cos ¢4, cosl,,sin ¢y, cosl,,sinb,)

h=0 and h=(0,0,h) solvable. No phase transitions
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Phase Diagram, S=1/2

Vector Chirality
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— 0.10

0.10 - (b) OBC

Unusual Spectrum |
from ED A

 PBCis gapped

* OBC appears gapless

0.05 — 0.05

* OBC lowers the energy !

* h,,=0.7 Inside Soliton
Phase

0.00

Gap for PBCis ~ 0.03 K
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Solitons: OBC

Topological Soliton, connecting 2 degenerate ground-states

(a) hay = 0.51 < hay

* Only every second point is shown
* DMRG Results — Almost Exact

1 (b) het < hay = 0.55 < hey

(C) hcl =< hmy = 970 < hqz

)
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<

(d) he < hyy = 0.75
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Variational Picture S¥SE L SV S,

Removed YY-Bond !
D =YX... ... X // Asymmetry

Lowers Energy ( )> |y— L = [y— s 33 Y Lom Y T Y 7 At h* all bond operators are 0
Zeeman term on site | lowers energy

(X|S¥SY| ) =0
|B>:|XY/(ZYX> Anti-Soliton <Y|S:1:S$|/(>:O

Raises Energy more |¢B(Z)> — ’ZE- Y= [ZC‘_ /lz — y)_ Lm Y L= Y = CIZ‘>,

Up(1)) = ly- 2= y- @J- /' = y] T Y= 1Y),

bond operators [i-1,i] and [l,i+1]
Very costly, Zeeman term on

|¢B (Z)> ‘ZC- Y Lo [y- /z - L = Yuu Lom Y :13> site | cannot compensate

Remember all bond interactions are AF
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Variational Subspace OBC

Watch Out !

. v ¥
V) = S, [95)= 3 alB()

k=1 [=

J1-J2 chain: Shastry, Sutherland, Phys. Rev. Lett. 47, 964 (1981)

Basis states are non-orthogonal: Generalized eigenvalue problem
Hii = h o(K)[H]| u(I)I and M = h (k)| ()i,

Dense Matrices
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The Soliton Masses: From Var|at|ona| and DI\/IRG
Calculations. [ -7 (ei—amg | = .V 1

ﬁ 0101 _.

A b < () B > O <~T -0.004 oy . : : :
0151 0 200 4 400
0.20 '

!

{Ab—|—AB > O}

h,,=0.7 A b:_ O 2044K A B :()24-55K Compared to DMRG A PBC 2002962K

) AVY. ~0.04K




Excited States OBC

h,,=0.7 Inside Soliton Phase
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<S;'y>i‘1/b
<S§E>dmrg
(a) First Excited 1} State
(b) Second Excited 2} State
(c) Third Excited 3} State
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Two Soliton bB states for PBC

| oe ()1 = 1Y% %i = %0 yo x°(y% %; - x)-y°xS

X J1-J2 chain: Shastry, Sutherland, Phys. Rev. Lett. 47, 964 (1981)

| Bl = ai il os(l,])l
6 ]

Variational Results : Gap with PBC



Unusual Spectrum

from ED
 PBCis gapped

* OBC appears gapless

* OBC lowers the energy !

* h,,=0.7 Inside Soliton

Phase

2 soliton bB
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- Exact Ground-States in a field
- Surrounding Gapped Phase
- Single Soliton ground-states in 1D with OBC

- Thanks | Open Questions:
- Experimental Realization Ba,IrO, ?

- Rigourous proof of Gap ?
- Excitations (Generalization of Solitons ?)

* ADS. Richards, ESS, arXiv:2310.01384

e ESS, J.Ridell, H.-Y. Kee, Phys. Rev. Research 5,013210 (2023)

* ESS, J. Gordon, J. Ridell, T. Yang, H.-Y. Kee, Phys. Rev. Research 5, L012027 (2023)
* ESS, A Catuneanu, JS Gordon, HY Kee Physical Review X 11 (1), 011013 (2021)
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