RPMBT22: Quantum Avalanche as Nonequilibrium Instability

Jong Han (SUNY Buffalo)

We are trying find a foothold for theoretical models of DC nonequilibrium many-body phenomena that permit an accessible solution.

nature communications

Article

Correlated insulator collapse due to quantum avalanche via in-gap ladder states

PHYSICAL REVIEW B 109, 054307 (2024)

Avalanche instability as nonequilibrium quantum criticality

Xi Chen and Jong E. Han*

Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260, U

Received: 9 May 2022

Jong E. Han ¹ □, Camille Aron^{2,3}, Xi Chen¹, Ishiaka Mansaray¹, Jae-Ho Han⁴, Ki-Seok Kim • 5, Michael Randle • & Jonathan P. Bird • 1,6

Accepted: 4 May 2023

Talk Outline

a minimal model

- Intro: Is an electronic band stable under a DC electric-field?
- Set up fermion- and boson-baths for steady-state noneq. limit
- Phase transition controlled by the coupling to environment
 - application: insulator-to-metal transition by an electric field
- Two-band model for symmetry-broken Insulators
- Relevance to experiments: why we didn't see it earlier?

A Simpler Question: Is a Band Stable in Noneq.?

Field-induced tunneling (Franz-Keldysh effect) enables multiple spontaneous emission of bosons

Single Band above Fermi-Energy

hot system

cold environ.

dissipate by exchange

dissipate by emission

Coupling to Environment Controls Avalanche

- The avalanche field $E_{\rm av}$ is proportional to the coupling Γ to the environment ($\Gamma=0$ is a singular limit in steady-state nonequilibrium).
- Continuous nonequilibrium transition
- Avalanche easier for less thermally excited conditions! — quantum nature

Multiple Emission by (Keldysh) Diagrammatics

"Eliashberg" diagrams

- Multiplicative factor $\lambda \approx 1$ sigmals an avalanche
- Simplifying limits make an analytic calculation possible: occupation number $n_{\rm ex}\ll 1$, dephasing rate $\Gamma\ll E,\omega_0,\Delta$

Criterion for Transition

$$\lambda = \frac{\sum_{p}^{(4),<}(0)}{\sum_{p}^{(2),<}(0)} \approx \frac{img_{\text{ep}}^{2}}{2\omega_{0}} \int \frac{dq}{2\pi} \int ds \frac{e^{i(q^{2}/2m+\omega_{0})s}}{qEs+2im\Gamma}$$
$$= \frac{mg_{\text{ep}}^{2}}{4\omega_{0}E} \int_{-\infty}^{\infty} \frac{dq}{|q|} \exp\left(-\frac{2m\Gamma}{E} \frac{q^{2}/2m+\omega_{0}}{|q|}\right)$$

$$= \frac{mg_{\rm ep}^2}{\omega_o E} K_0 \left(\frac{2\Gamma\sqrt{2m\omega_0}}{E}\right) = 1$$

Chen and Han, PRB 109, 054307 (2024)

Agreement with Numerical Lattice Model

Excellent agreement with numerical lattice calculations, except for an overall factor*

Competition of Avalanche with Dephasing

Quantum Avalanche (in Cartoon)

The quantum avalanche occurs not because electrons become energetic, but because the floor becomes unstable due to the spontaneous emission.

How it's Relevant?: Resistive Switching (RS)

Resistve Switching is a diverse topic and has a long history. It concerns sudden switching of restsivity under a DC electric field. Mechanisms such as impact ionization, electro-migration, lattice transition, and correlation-driven in V_xO_y, NbO₂ (Mott), MC₃ (CDWs) etc.. exist.

- Insulator-metal transition by electric-field (Mott, CDW systems)
- Unsettled debate over thermal vs quantum origin

In search of an elemental understanding, I will view RS as nonequilibrium (bulk) phase transition.

Symmetry-Broken 2-Band Model

self-consistent mean-field gap, controlled by nonequilibrium electron fluctuations.

Solve the Keldysh GF with the steady-state bulk condition

$$G(x,\omega) = G(x + a, \omega + eEa)$$

Avalanche and Two-Step Transition

Criterion for Thermal or Quantum?

NbSe₃, J. Bardeen, Physics Today (1990)

Conclusions and Outlook

- We presented a concrete quantum model for nonequilibrium phase transition, with some analytic understanding.
- Need to better understand when the quantum avalache overcomes the dephasing in interacting models
- · Starting to worry about better solvers...