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Introduction and motivation

Population imbalance

@ Conventional BCS pairs particles on a Fermi surface with opposite momenta and spins in
the case of S-wave pairing.

@ There are many systems with population imbalance, where the pairing occurs between
particles lying on different Fermi surfaces:

A wide class of systems, with characteristic energy scales differing by some 20 orders of
magnitude, share a common feature of pairing among imbalance populations. J

Metallic superconductors with paramagnetic impurities. The effect of impurities i
induce an average slitting of Fermi-levels of spin-up and spin-down electrons. This can
be described by adding a Pauli paramagnetic term to the spectrum:
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-Concepts of “gapsless superconductivity” (1961)
-Concepts of moving condensate - “Fulde-Ferrel-Larkin-Ovchninnikov- phase” (1964)

Nuclear system - neutron-proton pairing in nuclei and astrophysical objects

Deconfined quark matter - pairing among different flavor of quarks




Introduction and motivation

Spin polarized neutron matter in magnetars

Most of the compact stars feature
field B ~ 10'> G. But a special
class of these - magentars - may fea-
ture fields of the order 1013 G at the
surface and up to 10'® G in the in-
teriors.

Effects on the strong magnetic
field on the Ne nucleus via spin-
paramagnetic interaction with the B
field (@ B = 0, (b) B = 107
G [taken from Phys. Rev. C 94,
035802 (2016).] Computed via the
Sky3D code modified to account for
B-fields.




Introduction and motivation

Isospin asymmetrical nuclear matter
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Nuclei away from valley of beta-stability are isospin asymmetrical - perhaps some traces of n-p pairing can be seen.

In cases when pairing is between neutrons and protons the
isospin asymmetry will lead to “imbalanced pairing” !




Introduction and motivation

Critical temperatures in nuclear matter
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Left panel. Dependence of the experimental scattering phase shifts in the 35y, >P5, 3D5, and
3D, partial waves on the laboratory energy. Right panel. The dependence of the critical tem-

peratures of superfluid phase transitions in the attractive channels on the chemical potential.



Fundamentals of pairing in isospin asymmetric nuclear matter

Pairing in isospin asymmetrical nuclear matter
Nuclear matter Hamiltonian - isospin asymmetry - Greek indices label isospin
a Z / ﬁ—w* (r)Vipa (r) Z / Exd AL D) V) P )da ().
NN —interaction

We use real time Green’s function, equilibrium limit of Keldysh-Schwinger formalism.
Dyson equations (DE) for neutrons and protons

G;](xl)éa@(xl,xz) = i§a56(x1 —X2) + iZ/d3X3 XA:aw(xl,X3)G.yg(X3,x2),

where 1 is a unit matrix, G ' (x) = i8/8t + V2 /2mea + po and GF of the superfluid state
(Nambu-Gorkov space)
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The DSE equations are closed via the approx. for the self-energy matrix (anomalous part reads)

Aap(xi,x2) = Z/Faﬁfyn(xl7x23x37x4)F7)€(x37x4)dx3dx4~



Fundamentals of pairing in isospin asymmetric nuclear matter

Integrating out fast modes in real-time Green’s functions

Inhomogeneous systems - separation of CM and relative motions
G(va) %G(wyszvT)z X =X — X2, X = ()C] +x2)/2

The DSE now is written as
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where normal state spectrum
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The quasiparticle excitation spectrum is determined in the standard fashion by finding the poles
of the propagators
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Fundamentals of pairing in isospin asymmetric nuclear matter

Solutions of Dyson equation (spectrum)
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Four-fold split spectrum:
- isospin asymmetry and finite momentum
- competition between spin-1 and spin-0 pairing
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In nuclear matter S — D isospinglet state dominates (but not in neutron stars). The spectrum
under this approximation is two-fold split - complete analogue to other imbalanced systems.
Solve coupled equations for densities
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where V; s (k, k") is the interaction in the § — D partial wave.



Fundamentals n isosnin asvmmetric nuclear matter

Realizations of superconducting phases with two species

BCS: k=-k,du=0 ASYMMETRIC BCS:k=-k, 0

A
|

rotational/transl. symmety rotational/symmetry, time reversal broken

LOFF: k+P=-k ou+0 DFS phase: k~k’, du#0

@

rotational/trans sym. broken only rotational symmetry is broken to O(2)



Fundamentals of pairing in isospin asymmetric nuclear matter

Possible phases, include BCS, FFLO, DFS, and “spatial mixing” for s and n phases by a factor
0<x<1

Mixed phase has domains of symmetrical BCS matter embedded in extra fluid of excess
particles (no surface energy in computations yet)

0=0, A#0, x=0, BCSphase,
0#0, A#0, x=0, LOFF phase,
de#0, A #0, x=0, DFSphase,
0=0, AF#0, x#0, PSphase,
Q0=0, A=0, x=1, unpaired phase,

Thus superfluid isospin asymmetrical nuclear matter is expected to have a rich phase diagram -
at least 4 competing phases - a number of critical points




Fundamentals of nairing in isosnin asvmmetric nnclear matter

BCS-BEC crossover with imbalance Occupation numbers

@ Nozieres-Schmitt-Rink conjecture:
.. the BCS theory smoothly interpolates between the weak and strong couplings.
@ Mathematically BEC limit the pair-wave function

w(k) = (' )= %’? [1—rEh -1 @

can be written as a Schrodinger equation
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with an energy eigenvalue 2.

@ Nuclear systems -Density induced BCS-BEC crossover - :
Transition from 3§;->D; pairing to Bose-Einstein Condensate (BEC) of deuterons

- How the BCS-BEC crossover is affected by new phases and visa-versa ?
- Does the transition remains a smooth-crossover ?
- properties of the deuteron condensate in the low-density limit ?




Tmbhalanced snnerflnids

Temperature-density phase diagram for varying asymmetry
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- Competing phases: BCS, LOFF, PS, Unpaired

- BCS - BEC crossover, with LOFF disappearing in the low density limit

- tetra-critical points (Lifshitz point), i.e., an inhomogeneous phase terminates at the point
- triangle: LOFF quenched by BCS-BEC crossover, quadrangle: quatro-critical-point
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Imbalanced superfluids

Three-dimensional view of the phase diagram

log(p/pg)

- Competing phases: BCS, LOFF, PS, Unpaired
- BCS - BEC crossover, with LOFF disappearing in the low density limit J




Tmbhalanced snnerflnids

Signatures of BCS-BEC crossover
@ Pair wave function — kernel of the gap equation

v = Vﬁ/,ZPK@JM—K@ﬁW”ﬁ
1 — 2 (E%)

K(ko) = ®)
HZ,: 4\/Es(k)* + A2(k, Q)
@ Occupation numbers of neutrons and portons
@ Quasiparticle spectra in the paired state
@ Coherence length
2k
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Consider three regimes

log1o (p%) kelfm=']  T[MeV] d[fm] Ems[fm] & [fm]

WCR —0.5 0.91 0.5 1.68 3.17 1.41
ICR —-1.5 0.42 0.5 3.61 0.94 1.25
SCR —2.5 0.20 0.2 7.79 0.57 1.79




Kernel (pair-wave-function) of the gap equation in momentum space

K(K)

K(k)

Density and temperature dependence of the kernel of the gap (pair-wave function) equation




Tmbhalanced snnerflnids

Kernel of the gap equation in momentum space
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Asymmetry dependence of the kernel of the gap equation (left) and angle dependence in the
case of the FFLO phase. J
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Tmbhalanced snnerflnids

Real space wave function of the Cooper wave-function
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Left - asymmetry dependence across the BCS-BEC crossover; Right - angle dependence in the
FFLO phase J
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Tmbhalanced snnerflnids

2nd moment real space wave function of the Cooper wave-function
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The 2nd moment of density probability, 72| ¥(r)|?, in BCS (left) and LOFF (right) phases.
Superposition of oscillations in the left lower panel is the effect of the wave-structure of the
LOFF phase.
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Asymmetry dependence across the BCS-BEC crossover (left). Dependence on the angle in the
FFLO phase (right). J
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Asymmetry dependence across the BCS-BEC crossover (left). Dependence on the angle in the
FFLO phase (right). J




Imbalanced superfluids

Nucleonic pairing patterns in neutron stars

n/n;

Three main types of condensates:

— 1Sy Cooper pair condensate of neutrons in the crust

— 1Sy Cooper pair condensate of protons in the core

— 3P, -3F, Cooper pair condensate of neutron in the core

— 3D, and 3Py are attractive and can also lead to (exotic) pairing




Imbalanced superfluids

BCS theory of spin-polarized neutron matter.

Nambu-Gorkov matrix Green’s function

-~ (G F, )_( (Trb1p)) <wa.¢2>)
’G”—’(Fg G, )\ (Tuteh)y (Tefn) )

Dyson equation, which we write in momentum space as

[Go(k. @)™ = E(k. Q)] Gk, Q) = Luxs,

where Z(k, Q) is the matrix self-energy. Explicitly,

ik, — e%" 0 0 iA G;L 0 0 F
0 ik, — ej —iA 0 0 Gf F, 0
. . _ + dl =1, (10)
0 iA ik, + €4 0 0 FN GT 0
—iA 0 0 ik, + € FH 0 0 Gi

where we use short-hand Gfrr = G;} and so on.



Imbalanced superfluids

Quasiparticle spectra and Pauli spin-paramagnetism

These single-particle energies can be separated into symmetrical and anti-symmetrical parts
with respect to time-reversal operation by writing

e;: = Es—d0pEEy,
Ef = Es+0utEy,
where
T VA S Py e
S = o Hy A = omr H= (B — Ky = (T Ky .

The possible solutions, or phases, of the variational problem, so defined can be classified
according to the alternatives

0=0, A#0, x=0, BCS phase,
0=0, A=0, x=1, unpaired phase,
0#0, A#0, x=0, LOFF phase,

0=0, A#0, 0<x<1, phase-separated phase.



Imbalanced superfluids

Phase diagram of spin-polarized neutron matter
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Temperature-density phase diagram of neutron matter in the temperature-density plane for

several spin polarization
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induced by magnetic fields.



Imbalanced superfluids

Critical magnetic field in neutron matter
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— Left: Magnetic field required to create a specified spin polarization as a function of the density
for two polarization values o = 0.1 (a) and 0.2 (b) and temperatures 7 = 0.25 MeV (solid
line), 0.5 MeV (dashed line), and 0.75 MeV (dash-dotted line).

— Right: Unpairing magnetic field as a function of density (in units of pg) for 7 = 0.05 MeV
(solid line) and T = 0.5 MeV (dashed line).



Conclnsions

Conclusions

@ Asymmetrical nuclear matter in the superfluid state may feature a number of
unconventional phases including a phase with moving condensate. The phase diagram is
complex and contains tri-critical points and even a four-critical point

@ BCS-BEC crossover induced complex modification at the microscopic level:
quasiparticle spectrum, occupation of states, topology of Fermi sphere, and the structure
of pair wave-function.

@ Spin-polarized neutron matter may feature similar phases, but now due to the
spin-polarization by superstrong magnetic fields. Many parallels to the case of
asymmetrical nuclear matter.

@ For more information, see the review by A. S. and J. W. Clark, Eur. Phys. J. A (2019) 55:
167, arXiv:1802.00017.
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