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Introduction and motivation

Population imbalance

Conventional BCS pairs particles on a Fermi surface with opposite momenta and spins in
the case of S-wave pairing.

There are many systems with population imbalance, where the pairing occurs between
particles lying on different Fermi surfaces:

A wide class of systems, with characteristic energy scales differing by some 20 orders of
magnitude, share a common feature of pairing among imbalance populations.

Metallic superconductors with paramagnetic impurities. The effect of impurities is to
induce an average slitting of Fermi-levels of spin-up and spin-down electrons. This can
be described by adding a Pauli paramagnetic term to the spectrum:

ϵ↑ =
p2

2m
− µ↑, ϵ↓ =

p2

2m
− µ↓, µ↑ = µ+ δµ, µ↓ = µ− δµ, δµ ∝ σB

-Concepts of “gapsless superconductivity” (1961)
-Concepts of moving condensate - “Fulde-Ferrel-Larkin-Ovchninnikov- phase” (1964)

Nuclear system - neutron-proton pairing in nuclei and astrophysical objects

Deconfined quark matter - pairing among different flavor of quarks



Introduction and motivation

Spin polarized neutron matter in magnetars

Most of the compact stars feature
field B ∼ 1012 G. But a special
class of these - magentars - may fea-
ture fields of the order 1015 G at the
surface and up to 1018 G in the in-
teriors.

Effects on the strong magnetic
field on the Ne nucleus via spin-
paramagnetic interaction with the B
field (a) B = 0, (b) B = 1017

G [taken from Phys. Rev. C 94,
035802 (2016).] Computed via the
Sky3D code modified to account for
B-fields.



Introduction and motivation

Isospin asymmetrical nuclear matter

Nuclei away from valley of beta-stability are isospin asymmetrical - perhaps some traces of n-p pairing can be seen.

In cases when pairing is between neutrons and protons the
isospin asymmetry will lead to “imbalanced pairing” !



Introduction and motivation

Critical temperatures in nuclear matter
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Left panel. Dependence of the experimental scattering phase shifts in the 3S1, 3P2, 3D2, and
3D1 partial waves on the laboratory energy. Right panel. The dependence of the critical tem-

peratures of superfluid phase transitions in the attractive channels on the chemical potential.



Fundamentals of pairing in isospin asymmetric nuclear matter

Pairing in isospin asymmetrical nuclear matter
Nuclear matter Hamiltonian - isospin asymmetry - Greek indices label isospin

Ĥ =
∑
α

∫
d3x

1
2mα

∇ψ̂†
α(r)∇ψ̂α(r)−

∑
αβ

∫
d3xd3x′ψ̂†

α(r)ψ̂
†
β(r) V(r, r′)︸ ︷︷ ︸

NN−interaction

ψ̂β(r′)ψ̂α(r).

We use real time Green’s function, equilibrium limit of Keldysh-Schwinger formalism.
Dyson equations (DE) for neutrons and protons

Ĝ−1
α (x1)Ĝαβ(x1, x2) = 1̂δαβδ(x1 − x2) + i

∑
γ

∫
d3x3 Σ̂αγ(x1, x3)Ĝγβ(x3, x2),

where 1̂ is a unit matrix, G−1
α (x) ≡ i∂/∂t +∇2/2mα + µα and GF of the superfluid state

(Nambu-Gorkov space)

iĜαβ(x1, x2) ≡ i

(
Gαβ(x1, x2) Fαβ(x1, x2)

F†
αβ(x1, x2) G†

αβ(x1, x2)

)
, Ĝ−1

α (x) =

(
G−1
α (x) 0

0
[

G−1
α (x)

]∗ )
.

The DSE equations are closed via the approx. for the self-energy matrix (anomalous part reads)

∆αβ(x1, x2) =
∑
γκ

∫
Γαβγκ(x1, x2; x3, x4)Fγκ(x3, x4)dx3dx4.



Fundamentals of pairing in isospin asymmetric nuclear matter

Integrating out fast modes in real-time Green’s functions

Inhomogeneous systems - separation of CM and relative motions

Ĝ(x,X) → Ĝ(ω, p,R, T), x = x1 − x2, X = (x1 + x2)/2

The DSE now is written as

∑
γ

(
ω − ϵ+α δαγ −∆αγ

−∆†
αγ ω + ϵ−α δαγ

)(
Gγβ Fγβ

F†
γβ G†

γβ

)
= δαβ 1̂, (1)

where normal state spectrum

ϵ±α = ϵ±α,Kin − µα±Re Σα − Im Σα ≃ ϵ±α,Kin − µα±δµ. (2)

The quasiparticle excitation spectrum is determined in the standard fashion by finding the poles
of the propagators

ϵ±α,Kin =
1

2mα

(
P
2
± p
)2

=
P2

8mα
±

Pp
2mα

cos θ +
p2

2mα
(3)



Fundamentals of pairing in isospin asymmetric nuclear matter

Solutions of Dyson equation (spectrum)

ω±± = ϵA ±
√
ϵS +

1
2

Tr (∆∆†)±
1
2

√
[Tr (∆∆†)]2 − 4Det

(
∆∆†

)
.

∆ ≡ ∆αβ ϵS = (ϵ+ + ϵ−)/2, ϵA = (ϵ+ − ϵ−)/2

Four-fold split spectrum:
- isospin asymmetry and finite momentum
- competition between spin-1 and spin-0 pairing

∆ =

(
∆↑↓ ∆↑↑
∆↓↓ ∆↓↑

)
≃
(

∆↑↓ 0
0 ∆↓↑

)
(4)

In nuclear matter S − D isospinglet state dominates (but not in neutron stars). The spectrum
under this approximation is two-fold split - complete analogue to other imbalanced systems.
Solve coupled equations for densities

ρn/p(Q⃗) = −2
∫

d4k
(2π)4

Im[G+
n/p(k, Q⃗)− G−

n/p(k, Q⃗)]f (ω), (5)

and pairing gap

∆(Q) =
1
2

∑
a,r

∫
d3k′

(2π)3
Vl,l′ (k, k

′)
∆l′ (k′,Q)

2
√

ES(k′)2 +∆l′ (k′,Q)
[1 − 2f (Er

a)], (6)

where Vl,l′ (k, k′) is the interaction in the S − D partial wave.



Fundamentals of pairing in isospin asymmetric nuclear matter

Realizations of superconducting phases with two species

  

   rotational/transl. symmety     rotational/symmetry, time reversal broken

rotational/trans sym. broken only rotational symmetry is broken to O(2)

δµ = 0BCS: k = −k, δ µ = 0/ASYMMETRIC BCS: k = − k,

LOFF:    k + P = −k’, δµ = 0/ δµ = 0/DFS phase:  k ~ k’,



Fundamentals of pairing in isospin asymmetric nuclear matter

Possible phases, include BCS, FFLO, DFS, and “spatial mixing” for s and n phases by a factor
0 ≤ x ≤ 1

Mixed phase has domains of symmetrical BCS matter embedded in extra fluid of excess
particles (no surface energy in computations yet)


Q = 0, ∆ ̸= 0, x = 0, BCS phase,
Q ̸= 0, ∆ ̸= 0, x = 0, LOFF phase,
δϵ ̸= 0, ∆ ̸= 0, x = 0, DFS phase,
Q = 0, ∆ ̸= 0, x ̸= 0, PS phase,
Q = 0, ∆ = 0, x = 1, unpaired phase,

Thus superfluid isospin asymmetrical nuclear matter is expected to have a rich phase diagram -
at least 4 competing phases - a number of critical points



Fundamentals of pairing in isospin asymmetric nuclear matter

BCS-BEC crossover with imbalance Occupation numbers

Nozières-Schmitt-Rink conjecture:
... the BCS theory smoothly interpolates between the weak and strong couplings.

Mathematically BEC limit the pair-wave function

ψ(k) = ⟨a†
n,⃗k

a†
p,−⃗k

⟩ =
∆(k)
2Ek

[
1 − f (E+

k )− f (E−
k )
]
, (7)

can be written as a Schrödinger equation

k2

m
ψ(k) +

[
1 − f (E+

k )− f (E−
k )
]∑

k′
V(k, k′)ψl′ (k

′) = 2µψ(k)

with an energy eigenvalue 2µ.
Nuclear systems -Density induced BCS-BEC crossover - :

Transition from 3S1-3D1 pairing to Bose-Einstein Condensate (BEC) of deuterons

- How the BCS-BEC crossover is affected by new phases and visa-versa ?
- Does the transition remains a smooth-crossover ?
- properties of the deuteron condensate in the low-density limit ?



Imbalanced superfluids

Temperature-density phase diagram for varying asymmetry
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- Competing phases: BCS, LOFF, PS, Unpaired
- BCS - BEC crossover, with LOFF disappearing in the low density limit
- tetra-critical points (Lifshitz point), i.e., an inhomogeneous phase terminates at the point
- triangle: LOFF quenched by BCS-BEC crossover, quadrangle: quatro-critical-point



Imbalanced superfluids

Three-dimensional view of the phase diagram
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Imbalanced superfluids

Signatures of BCS-BEC crossover
Pair wave function – kernel of the gap equation

Ψ(r) =
√

N
∫

d3p
(2π)3

[K(p,∆)− K(p, 0)]eip·r,

K(k, θ) ≡
∑
a,r

1 − 2f (Ea
r )

4
√

ES(k)2 +∆2(k,Q)
(8)

Occupation numbers of neutrons and portons
Quasiparticle spectra in the paired state
Coherence length

⟨r2⟩ =
∫

d3r r2|Ψ(r)|2, ξrms =
√

⟨r2⟩, ξa =
ℏ2kF

πm∗∆
. (9)

Consider three regimes

log10

(
ρ
ρ0

)
kF[fm−1] T [MeV] d [fm] ξrms [fm] ξa [fm]

WCR −0.5 0.91 0.5 1.68 3.17 1.41
ICR −1.5 0.42 0.5 3.61 0.94 1.25
SCR −2.5 0.20 0.2 7.79 0.57 1.79



Imbalanced superfluids

Kernel (pair-wave-function) of the gap equation in momentum space
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Imbalanced superfluids

Kernel of the gap equation in momentum space
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Imbalanced superfluids

Real space wave function of the Cooper wave-function
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Imbalanced superfluids

2nd moment real space wave function of the Cooper wave-function
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Imbalanced superfluids

Quasiparticle spectra
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Nucleonic pairing patterns in neutron stars
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Three main types of condensates:

— 1S0 Cooper pair condensate of neutrons in the crust
— 1S0 Cooper pair condensate of protons in the core
— 3P2 -3F2 Cooper pair condensate of neutron in the core
— 3D2 and 3P0 are attractive and can also lead to (exotic) pairing
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BCS theory of spin-polarized neutron matter.

Nambu-Gorkov matrix Green’s function

iĜ12 = i
(

G+
12 F−

12
F+

12 G−
12

)
=

(
⟨Tτψ1ψ

+
2 ⟩ ⟨Tτψ1ψ2⟩

⟨Tτψ
+
1 ψ

+
2 ⟩ ⟨Tτψ

+
1 ψ2⟩

)
,

Dyson equation, which we write in momentum space as[
Ĝ0(k,Q)−1 − Ξ(k,Q)

]
Ĝ(k,Q) = 14×4,

where Ξ(k,Q) is the matrix self-energy. Explicitly,


ikν − ϵ+↑ 0 0 i∆

0 ikν − ϵ+↓ −i∆ 0
0 i∆ ikν + ϵ−↑ 0

−i∆ 0 0 ikν + ϵ−↓




G+
↑ 0
0 G+

↓

0 F−
↑↓

F−
↓↑ 0

0 F+
↑↓

F+
↓↑ 0

G−
↑ 0
0 G−

↓

 = 1, (10)

where we use short-hand G+
↑ ≡ G+

↑↑ and so on.



Imbalanced superfluids

Quasiparticle spectra and Pauli spin-paramagnetism

These single-particle energies can be separated into symmetrical and anti-symmetrical parts
with respect to time-reversal operation by writing

ϵ±↑ = ES − δµ± EA,

ϵ±↓ = ES + δµ± EA,

where

ES =
Q2/4 + k2

2m∗ − µ̄, EA =
k · Q
2m∗ , δµ ≡ (µ↑ − µ↓)/2 µ̄ ≡ (µ↑ + µ↓)/2.

The possible solutions, or phases, of the variational problem, so defined can be classified
according to the alternatives

Q = 0, ∆ ̸= 0, x = 0, BCS phase,
Q = 0, ∆ = 0, x = 1, unpaired phase,
Q ̸= 0, ∆ ̸= 0, x = 0, LOFF phase,
Q = 0, ∆ ̸= 0, 0 < x < 1, phase-separated phase.



Imbalanced superfluids

Phase diagram of spin-polarized neutron matter
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Critical magnetic field in neutron matter
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Conclusions

Conclusions

Asymmetrical nuclear matter in the superfluid state may feature a number of
unconventional phases including a phase with moving condensate. The phase diagram is
complex and contains tri-critical points and even a four-critical point

BCS-BEC crossover induced complex modification at the microscopic level:
quasiparticle spectrum, occupation of states, topology of Fermi sphere, and the structure
of pair wave-function.

Spin-polarized neutron matter may feature similar phases, but now due to the
spin-polarization by superstrong magnetic fields. Many parallels to the case of
asymmetrical nuclear matter.

For more information, see the review by A. S. and J. W. Clark, Eur. Phys. J. A (2019) 55:
167, arXiv:1802.00017.
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