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40 years of HTSC: What is the “glue”?

and single-particle measurements suggest a much less temper-
ature-dependent boundary, which is represented here and is
discussed in more detail in Sec. IV.B.3. On the electron-doped
side, the phase diagram is generally similar except for a
stronger AFM order and a much less temperature-dependent
charge ordered region (Damascelli, Hussain, and Shen, 2003;
Armitage, Fournier, and Greene, 2010; Ghiringhelli et al.,
2012; da Silva Neto et al., 2016).
We first cover modern ARPES investigations in order of

decreasing electronic energy scales: the normal state, the
superconducting state, and the “zero” temperature Fermi
surface (“Fermiology”). Then contributions from nonelec-
tronic degrees of freedom are discussed in light of electron-
boson coupling. The electron- and hole-doped systems are
discussed based on both their unifying phenomenology and
their differentiating electron-hole asymmetry.

B. Normal state

1. Doping evolution of the electronic structure

Owing to crystal-field splitting, the copper dx2−y2 orbital
is the highest partly filled orbital, followed by the d3r2−z2
orbital [also denoted as dz2 ; Fig. 13(c)] (Mattheiss, 1987; Yu,
Freeman, and Xu, 1987; Pickett, 1989; Damascelli, Hussain,
and Shen, 2003). In one of the more three-dimensional cup-
rates La2−xSrxCuO4 (LSCO), polarization-dependent ARPES
shows the dominance of the in-plane dx2−y2 orbital component
near EF [Figs. 13(a)–13(c)], while the d3r2−z2 orbital compo-
nent resides mostly at higher binding energy or near the
antinodal momentum [ðπ; 0Þ point in the Brillouin zone, also
known as the antinode] [Figs. 13(b) and 13(c)] (Matt et al.,
2018). Note that a dispersion of 2 eV is observed on the
occupied side. Moderate to negligible kz dispersion in differ-
ent cuprates is found near the antinode, usually much smaller
than the in-plane bandwidth [Figs. 13(d) and 13(e)] (Takeuchi
et al., 2005; Horio et al., 2018; Matt et al., 2018). A single-
band description of superconductivity is challenged by the

vastly different Tc’s among different cuprate families, which
all share nominally the same CuOn−

2 plane. Another potential
caveat to the single-band theory lies in the recently discovered
heavily hole-doped cuprate superconductors with Tc’s
exceeding 80 K (Gauzzi et al., 2016; W. Li et al., 2019),
where the d3r2−z2 orbital content contributes more appreciably
at EF (Maier, Berlijn, and Scalapino, 2019). Varying degrees
of low-energy d3r2−z2 orbital content have also been proposed
to account for the family dependence of Tc (Sakakibara et al.,
2012). For simplicity, we focus on the electronic structure
associated with the dx2−y2 orbital for the remainder of this
section.
Strong electronic correlation inhibits double charge occu-

pancy and promotes charge localization (Anderson, 1959;
Gutzwiller, 1963; Hubbard, 1963; Kanamori, 1963; Mott,
1968). At the nominal valence Cu2þ, parent compound
cuprates contain one electron (or, equivalently, one hole)
per unit cell (“half filled”) and are insulating. The copper
dx2−y2 orbital heavily hybridizes with the ligand oxygen px; py

orbitals (see the CuO2−
2 sublattice in Fig. 12, upper inset), and

hole carriers doped through oxygenation are postulated to
form a singlet on the center copper, known as the Zhang-Rice
singlet (Zhang and Rice, 1988). The system gains kinetic
energy t when the hole hops between sites and pays an energy
costU when double occupancy occurs on the same site. Long-
range AFM order forms on the copper sites (Imada, Fujimori,
and Tokura, 1998; Lee, Nagaosa, and Wen, 2006) since the
electrons gain kinetic energy by virtual intersite hopping,
which is maximized when nearest-neighbor spins are anti-
parallel to each other. This effective low-energy single-band
approximation has enabled wide applications of the two-
dimensional single-band Hubbard model to describe the
behaviors of doped charge carriers in cuprates (Anderson,
1987). To effectively describe the hopping of the singlet, the
Hubbard model in the large U limit may be expanded in
powers of t, leading to the widely used t-J model (J ¼ 4t2=U)
and its extensions (Zhang and Rice, 1988; Lee, Nagaosa, and

FIG. 12. Schematic temperature-doping phase diagram of electron- and hole-doped cuprate superconductors. Top-left inset: lattice
arrangement for one unit cell of electron-doped cuprate ðLa=Nd;CeÞ2CuO4 (Tmax

c ∼ 30 K). Top-right inset: lattice arrangement for one
half unit cell of Bi2Sr2CaCu2O8þδ (Tmax

c ∼ 96 K).Middle inset: top view of the CuOn−
2 plane in real space. Red circle, copper; gray circle,

oxygen; blue circle, electron; white circle, doped hole; purple star, the critical doping that separates two different metallic regimes.
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I. INTRODUCTION

The discovery of superconductivity at 30 K in the
LaBaCuO ceramics by Bednorz and Müller (1986)
opened the era of high-Tc superconductivity, changing
the history of a phenomenon that had before been con-
fined to very low temperatures [until 1986 the maximum
value of Tc was limited to the 23.2 K observed in Nb3Ge
(Gavaler, 1973; Testardi et al., 1974)]. This unexpected
result prompted intense activity in the field of ceramic
oxides and has led to the synthesis of compounds with
increasingly higher Tc , all characterized by a layered
crystal structure with one or more CuO2 planes per unit
cell, and a quasi-two-dimensional (2D) electronic struc-
ture. By 1987, a Tc of approximately 90 K (i.e., higher
than the boiling point of liquid nitrogen at 77 K) was
already observed in YBa2Cu3O7!" (Wu et al., 1987).
The record Tc of 133.5 K (at atmospheric pressure) was
later obtained in the trilayer system HgBa2Ca2Cu3O8"x
(Schilling et al., 1993).

One may wonder whether the impact of the discovery
by Bednorz and Müller (1986) would have been some-
what overlooked if MgB2 , with its recently ascertained
39 K Tc , had already been discovered [Nagamatsu et al.
(2001); for a review see Day (2001)]. However, indepen-
dent of the values of Tc the observation of superconduc-
tivity in the ceramic copper oxides was in itself an unex-
pected and surprising result. In fact, ceramic materials
are typically insulators, and this is also the case for the
undoped copper oxides. However, when doped the latter
can become poor metals in the normal state and high-
temperature superconductors upon reducing the tem-
perature (see in Fig. 1 the phenomenological phase dia-
gram of electron- and hole-doped high-temperature
superconductors, here represented by Nd2!xCexCuO4
and La2!xSrxCuO4 , respectively). In addition, the de-
tailed investigation of their phase diagram revealed that
the macroscopic properties of the copper oxides are pro-
foundly influenced by strong electron-electron correla-
tions (i.e., large Coulomb repulsion U). Naively, this is
not expected to favor the emergence of superconductiv-
ity, for which electrons must be bound together to form
Cooper pairs. Even though the approximate T2 depen-
dence of the resistivity observed in the overdoped me-
tallic regime was taken as evidence for Fermi-liquid be-
havior, the applicability of Fermi-liquid theory (which
describes electronic excitations in terms of an interacting

gas of renormalized quasiparticles; see Sec. II.C) to the
‘‘normal’’ metallic state of high-temperature supercon-
ductors is questionable, because many properties do not
follow canonical Fermi-liquid behavior (Orenstein and
Millis, 2000). This breakdown of Fermi-liquid theory
and of the single-particle picture becomes most dramatic
upon approaching the undoped line of the phase dia-
gram (x#0 in Fig. 1), where one finds the antiferromag-
netic Mott insulator (see Sec. III). On top of this com-
plexity, it has long been recognized that also the
interplay between electronic and lattice degrees of free-
dom as well as the tendencies towards phase separation
are strong in these componds (Sigmund and Müller,
1993; Müller, 2000).

The cuprate high-temperature superconductors have
attracted great interest not only for the obvious applica-
tion potential related to their high Tc , but also for their
scientific significance. This stems from the fact that they
highlight a major intellectual crisis in the quantum
theory of solids, which, in the form of one-electron band
theory, has been very successful in describing good met-
als (like Cu) but has proven inadequate for strongly cor-
related electron systems. In turn, the Bardeen-Cooper-
Schrieffer (BCS) theory (Bardeen et al., 1957; see also
Schrieffer, 1964), which was developed for Fermi-liquid-
like metals and has been so successful in describing con-
ventional superconductors, does not seem to have the
appropriate foundation for the description of high-Tc
superconductivity. In order to address the scope of the
current approach in the quantum theory of solids and
the validity of the proposed alternative models, a de-
tailed comparison with those experiments that probe the
electronic properties and the nature of the elementary
excitations is required.

In this context, angle-resolved photoemission spec-
troscopy (ARPES) plays a major role because it is the
most direct method of studying the electronic structure
of solids (see Sec. II). Its large impact on the develop-
ment of many-body theories stems from the fact that this
technique provides information on the single-particle
Green’s function, which can be calculated starting from a

FIG. 1. Phase diagram of n- and p-type superconductors,
showing superconductivity (SC), antiferromagnetic (AF),
pseudogap, and normal-metal regions.

474 Damascelli, Hussain, and Shen: Photoemission studies of the cuprate superconductors

Rev. Mod. Phys., Vol. 75, No. 2, April 2003

SC

temperature, momentum, and energy, with high-
precision measurements of the polar Kerr effect
(PKE) and time-resolved reflectivity (TRR). Bi2201
was chosen to avoid the complications resulting
from bilayer splitting and strong antinodal bosonic
mode coupling inherent to Bi2Sr2CaCu2O8+d

(Bi2212) (1).WhereasARPES is a surface probe,
PKE enables us to monitor a bulk, thermody-
namic (via the fluctuation-dissipation theorem)
property that has proven (28) to be a sensitive
probe of the onset of a broken-symmetry state,
and TRR gives complementary information on
the bulk, near-equilibrium dynamics of the system.

We will first analyze our ARPES data col-
lected in different temperature regions. Above
T*, Pb-Bi2201 has a simple one-band band struc-
ture (right side of Fig. 1). For each cut in mo-
mentum space perpendicular to G-M [(0,0)-(p,0)]
(C1 to C7 in Fig. 1), the only distinct feature in
the corresponding Fermi-function–divided (27)
energy distribution curves (EDCs) is a maximum
(red circles in Fig. 2, A to G). As a function of the
y component of the wave vector (ky), the maxima
have an approximately parabolic dispersion for

Fig. 1. Fermi surface maps mea-
sured below Tc at 10 K (left) and
above T* at 172 K (right) in the
same momentum-space region
(flipped for display). Dashed white
lines labeled C1 to C7 depict the
cuts along which the EDCs shown in
Fig. 2, A toN,weremeasured.Magenta
squares labeled P1 to P16 along M-G
indicate momenta where EDCs in Fig.
2, V and W, were measured. Red and
blue squares on the left indicate mo-
menta of the Fermi-level crossing kF
(kF1 and kF2 in Fig. 2, A to G) at 172
K and back-bending kG (black arrows
in Fig. 2, O to S) at 10 K of the dis-
persion of the EDC maximum along
cuts C1 to C7. Red and blue circles
on the right indicate momenta of
identifiable peaks in the momentum
distribution curves (measured along
cuts parallel to cut C7) at EF at 172 K and 10 K, respectively. The solid red curves are a guide to the eye for the
red squares and circles, whereas the dashed blue curve is the guide for the blue squares; together they show
an increased kG−kF misalignment going away from the nodal toward the antinodal region. The magenta-
shaded region is approximately where multiple EDC features are found at 10 K.
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Fig. 2. (A to G) and (H toN) Selected EDCs at 172 K and at 10 K, respectively,
for cuts C1 to C7, nearly perpendicular to G-M (Fig. 1). Each EDC corresponds to
a white point in the cuts in Fig. 1. EDCs inmagenta and orange are located close
to kF. (O toU) Dispersions of the EDC features in (A) to (N) for cuts C1 to C7. For
each dispersion curve, every other symbol corresponds to an EDC in (A) to (N).

Error bars are estimated based on the sharpness of features, to be T3 meV
minimum and T8 meV maximum [examples shown in (O)] based on different
EDC analyses (27). (V andW) EDCs at momenta P1 to P16 along M-G (Fig. 1) at
172 K and 10 K, respectively. Circles denote the EDC shoulder feature (solid
green) and the EDC maximum feature at 10 K (blue) and at 172 K (red).
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He et al., Science 331, 1579 (2011)

E - EF (eV) E - EF (eV)

Arpes EDC for cuts along Brillouin-
zone boundary (near (π,0)), almost 
optimally doped Pb-Bi2201 with Tc 
of 38K, T* of 132K

172 K (NS) 10 K (SC)

each cut (red circles in Fig. 2, O to U); the band
bottom lies on the G-M axis, and the dispersion
crosses the Fermi level (EF) at two momenta, kF
(kF1 and kF2). The binding energy of the band

bottom monotonically decreases from near G to
M (Fig. 2, O to U). We take the Fermi-level
crossings of this single band to define the Fermi
surface. Despite the simplicity of the electronic

structure above T*, the width and energy-
dependent broadening of the EDC maximum
features, along with the familiar strange metal
behavior seen in transport, imply that the system
is not well described as a Fermi liquid.

We now turn to the temperature region below
Tc. Here, the entire Fermi surface is gapped ex-
cept at the nodal points (kF lying on the zone
diagonal). In the nodal region, consistent with
previous reports (4, 5, 11, 12), a d-wave–like gap
along the Fermi surface is observed that we quan-
tify as the energy position of the EDC maximum
(blue circles) at kF (Fig. 2, L to N). This max-
imum is still the only identifiable feature in the
EDC. By comparing the EDCs in Fig. 2, E to G,
with those in Fig. 2, L to N, we see that the peaks
of EDCs near kF are much sharper below Tc than
above T*; however (perhaps surprisingly), the
peaks well away from kF appear broader but with
larger experimental uncertainties (also see Fig. 2,
Vand W).

Away from the nodal region, the dispersion
along each cut rises to a minimum binding en-
ergy and then bends back (Fig. 2, H to K). These
back-bendings (black arrows in Fig. 2, O to S)
occur at momenta kG (kG1 and kG2), which are
increasingly separated from the Fermi surface
(compare blue and red squares on the left side of
Fig. 1) toward the antinodes (kF lying on the zone
boundary). Note that, for a superconducting gap,
as a consequence of the particle-hole symmetry,
one would expect kG ≅ kF (fig. S6), as is the case

Fig. 4. (A and B)
Selected EDCs at 40 K
and 22 K along cut C1
(Fig. 1). See Fig. 2, A
and H, for data at 172 K
and 10 K, and fig. S1, A
to E, for other interme-
diate temperatures. (C)
Antinodal EDCs at 10 K
after dividing by the 40
K counterparts, covering
themomentum range in-
dicated by the gray bar
in (H), in comparisonwith
those in (D) taken in a
similar range at 30 K on
an OP Bi2212 sample.
Nondispersive peaks are
seen in both cases de-
spite different sharpness
and energy positions. (E
to G) EDCs at different
fixedmomenta [specified
in (A) and (H)] and tem-
peratures around Tc. The
counterintuitive increase
of the antinodal gap, de-
fined by the energy posi-
tion of the EDCmaximum
in (F) and (G), with temperature rising above Tc, cannot be understood with a
single energy scale assumed. (Insets) Corresponding EDCs divided by the 60 K
counterpart, showing the peaks losing definition above Tc (fig. S2E). (H) Summary
for the dispersions of related EDC features across and below Tc. Vertical arrows

specify momenta M, kF2 at 172 K, and kG2 at 10 K. Apparent asymmetry of the
dispersions across M is due to a finite deviation of the cut from the high-symmetry
direction and a subtle balance of spectral weight between different features in the
EDC. All EDC features and error bars are similarly determined as in Fig. 2.
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Fig. 3. Temperature
dependence of Kerr ro-
tation (qK) measured by
PKE, in comparison with
that of the binding en-
ergy position of the EDC
maximum at kF given by
ARPES [reproduced from
fig. S1F and (29)]. ARPES
results are normalized to
the80Kvalues (free from
the interference of fluc-
tuating superconductivity).
The dashed black curve
is a guide to the eye for
the PKE data, showing a
mean-field–like critical
behavior close to T* [see
additional discussion in
(27)]. (Left inset) Tem-
perature dependence of
the transient reflectivity
changemeasured by TRR
(right axis). The dashed
black curve (left axis) is reproduced from the main panel. Error bars (if not visible) are smaller than the
symbol size. (Right inset) Dispersion of the EDC maximum at various temperatures above Tc, summa-
rizing the results of Figs. 2A and 4A and fig. S1, A to E. All data were taken on samples from the same
growth and annealing batch, except those reproduced from (29) on differently annealed samples.
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temperature, momentum, and energy, with high-
precision measurements of the polar Kerr effect
(PKE) and time-resolved reflectivity (TRR). Bi2201
was chosen to avoid the complications resulting
from bilayer splitting and strong antinodal bosonic
mode coupling inherent to Bi2Sr2CaCu2O8+d

(Bi2212) (1).WhereasARPES is a surface probe,
PKE enables us to monitor a bulk, thermody-
namic (via the fluctuation-dissipation theorem)
property that has proven (28) to be a sensitive
probe of the onset of a broken-symmetry state,
and TRR gives complementary information on
the bulk, near-equilibrium dynamics of the system.

We will first analyze our ARPES data col-
lected in different temperature regions. Above
T*, Pb-Bi2201 has a simple one-band band struc-
ture (right side of Fig. 1). For each cut in mo-
mentum space perpendicular to G-M [(0,0)-(p,0)]
(C1 to C7 in Fig. 1), the only distinct feature in
the corresponding Fermi-function–divided (27)
energy distribution curves (EDCs) is a maximum
(red circles in Fig. 2, A to G). As a function of the
y component of the wave vector (ky), the maxima
have an approximately parabolic dispersion for

Fig. 1. Fermi surface maps mea-
sured below Tc at 10 K (left) and
above T* at 172 K (right) in the
same momentum-space region
(flipped for display). Dashed white
lines labeled C1 to C7 depict the
cuts along which the EDCs shown in
Fig. 2, A toN,weremeasured.Magenta
squares labeled P1 to P16 along M-G
indicate momenta where EDCs in Fig.
2, V and W, were measured. Red and
blue squares on the left indicate mo-
menta of the Fermi-level crossing kF
(kF1 and kF2 in Fig. 2, A to G) at 172
K and back-bending kG (black arrows
in Fig. 2, O to S) at 10 K of the dis-
persion of the EDC maximum along
cuts C1 to C7. Red and blue circles
on the right indicate momenta of
identifiable peaks in the momentum
distribution curves (measured along
cuts parallel to cut C7) at EF at 172 K and 10 K, respectively. The solid red curves are a guide to the eye for the
red squares and circles, whereas the dashed blue curve is the guide for the blue squares; together they show
an increased kG−kF misalignment going away from the nodal toward the antinodal region. The magenta-
shaded region is approximately where multiple EDC features are found at 10 K.
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Fig. 2. (A to G) and (H toN) Selected EDCs at 172 K and at 10 K, respectively,
for cuts C1 to C7, nearly perpendicular to G-M (Fig. 1). Each EDC corresponds to
a white point in the cuts in Fig. 1. EDCs inmagenta and orange are located close
to kF. (O toU) Dispersions of the EDC features in (A) to (N) for cuts C1 to C7. For
each dispersion curve, every other symbol corresponds to an EDC in (A) to (N).

Error bars are estimated based on the sharpness of features, to be T3 meV
minimum and T8 meV maximum [examples shown in (O)] based on different
EDC analyses (27). (V andW) EDCs at momenta P1 to P16 along M-G (Fig. 1) at
172 K and 10 K, respectively. Circles denote the EDC shoulder feature (solid
green) and the EDC maximum feature at 10 K (blue) and at 172 K (red).
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show strong Jahn-Teller (J.T.) effects [13]. While 
SrFe(VI)O3 is distorted perovskite insulator, 
LaNi(III)O3 is a J.T. undistorted metal in which the 
transfer energy b~ of the J.T. eg electrons is sufficiently 
large [14] to quench the J.T. distortion. In analogy 
to Chakraverty's phase diagram, a J.T.-type polaron 
formation may therefore be expected at the border- 
line of the metal-insulator transition in mixed perovs- 
kites, a subject on which we have recently carried 
out a series of investigations [15]. Here, we report 
on the synthesis and electrical measurements of com- 
pounds within the B a - L a - C u - O  system. This sys- 
tem exhibits a number of oxygen-deficient phases 
with mixed-valent copper constituents [16], i.e., with 
itinerant electronic states between the non-J.T. Cu a + 
and the J.T. Cu z+ ions, and thus was expected to 
have considerable electron-phonon coupling and me- 
tallic conductivity. 

lI. Experimental 

1. Sample Preparation and Characterization 

Samples were prepared by a coprecipitation method 
from aqueous solutions [17] of Ba-, La- and Cu-ni- 
trate (SPECPURE JMC) in their appropriate ratios. 
When added to an aqueous solution of oxalic acid 
as the precipitant, an intimate mixture of the corre- 
sponding oxalates was formed. The decomposition 
of the precipitate and the solid-state reaction were 
performed by heating at 900 ~ for 5 h. The product 
was pressed into pellets at 4 kbar, and reheated to 
900 ~ for sintering. 

2. X-Ray Analysis 

X-ray powder diffract 9 (System D 500 SIE- 
MENS) revealed three individual crystallographic 
phases. Within a range of 10 ~ to 80 ~ (20), 17 lines 
could be identified to correspond to a layer-type per- 
ovskite-like phase, related to the K2NiF, structure 
( a=3 .79~  and c=13.21 ~) [16]. The second phase 
is most probably a cubic one, whose presence depends 
on the Ba concentration, as the line intensity de- 
creases for smaller x(Ba). The amount of the third 
phase (volume fraction > 30% from the x-ray intensi- 
ties) seems to be independent of the starting composi- 
tion, and shows thermal stability up to 1,000 ~ For 
higher temperatures, this phase disappears progres- 
sively, giving rise to the formation of an oxygen-defi- 
cient perovskite (La3Ba3Cu601,) as described by Mi- 
chel and Raveau [16]. 
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Fig. 1. Temperature dependence ofresistivityin Ba~Las _=Cu505 (a y) 
for samples with x ( B a ) =  1 (upper curves, left scale) and x ( B a ) =  
0.75 (lower curve, right scale). The first two cases also show the 
influence of  current density 

3. Conductivity Measurements 

The dc conductivity was measured by the four-point 
method. Rectangular-shaped samples, cut from the 
sintered pellets, were provided with gold electrodes 
and contacted by In wires. Our measurements be- 
tween 300 and 4.2 K were performed in a continuous- 
flow cryostat (Leybold-Hereaus) incorporated in a 
computer-controlled (IBM-PC) fully-automatic sys- 
tem for temperature variation, data acquisition and 
processing. 

For samples with x(Ba)_<l.0, the conductivity 
measurements, involving typical current densities of 
0.5 A/cm 2, generally exhibit a high-temperature me- 
tallic behaviour with an increase in resistivity at low 
temperatures (Fig. 1). At still lower temperatures, a 
sharp drop in resistivity (>90%) occurs, which for 
higher currents becomes partially suppressed (Fig. 1 : 
upper curves, left scale), This characteristic drop has 
been studied as a function of annealing conditions, 
i.e., temperature and 02 partial pressure (Fig. 2). For 
samples annealed in air, the transition from itinerant 
to localized behaviour, as indicated by the minimum 
in resistivity in the 80 K range, is not very pro- 
nounced. Annealing in a slightly reducing atmo- 
sphere, however, leads to an increase in resistivity 
and a more pronounced localization effect. At the 
same time, the onset of the resistivity drop is shifted 

Bednorz and Müller, Z. Phys. B 64, 
189 (1986)

J. Bednorz and K. Müller
Z. Phys. B 64, 189 (1986)
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FL: Fermi liquid

PG: pseudogap

1. INTRODUCTION
After more than three decades, cuprates continue to fascinate physicists because of a persistent
sense—a growing conviction—that these materials host novel quantum phenomena. And these
arise from electron interactions that are most likely also responsible for the exceptionally strong
superconductivity.

The repulsive interaction between electrons in cuprates is so strong that when there is one
electron on every Cu site of their CuO2 planes, a Mott insulator forms in which no motion is
possible. By removing electrons, or adding p holes (per Cu site), electron motion is restored, and
at high enough p, cuprates become well-behaved metals. The unusual phenomena occur in the
intermediate regime, between the Mott insulator at p = 0 and the Fermi liquid (FL) at p > 0.3
(Figure 1a).

This is where superconductivity lives, below a critical temperature Tc that forms a dome
(Figure 1a), peaking at a value that can exceed 150 K, i.e., halfway to room temperature. In this
review, we ask the following question: How does the underlying normal state—from which super-
conductivity emerges—evolve with doping? In particular, we focus on the ground state, as T → 0,
accessed by suppressing superconductivity with a large magnetic field.

At T = 0, in the absence of superconductivity, the key event on the path from FL to Mott
insulator is the onset of the pseudogap (PG) phase, at a critical doping p⋆ (see Figure 1). One
of the most remarkable—and puzzling—phenomena in condensed matter physics, the PG phase
exists in all hole-doped cuprates below a temperature T ⋆ that decreases with doping to end at
p⋆ (Figure 1). We discuss what high-field studies reveal about the ground state of cuprates, both
inside (p < p⋆) and outside (p > p⋆) the PG phase. The latter region, dubbed strange metal,
presents another major puzzle of condensed matter physics: a perfectly T -linear dependence of
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Figure 1
Phase diagram of hole-doped cuprates. (a) In zero field, superconductivity exists in a dome below Tc (dashed line). When it is removed
by a magnetic field, various underlying ground states are revealed: Doped Mott insulator with antiferromagnetic order (AF, brown);
pseudogap phase (PG, yellow) below a temperature T ⋆, ending at a T = 0 critical point p⋆ (red dot); charge-density wave phase (CDW,
blue), contained inside the PG phase; a strange metal (SM, white region) just above p⋆, which gives way to a Fermi liquid (FL, gray region)
at highest doping. (b) Phase diagram of Nd-LSCO, with the PG temperature T ⋆ measured by resistivity (circles) and angle-resolved
photoemission spectroscopy (ARPES) (square; panels c,d), ending at the critical point p⋆. (c) ARPES spectra showing the PG in
Nd-LSCO measured just above Tc at four dopings, as indicated. The PG is seen to close between p = 0.20 and p = 0.24, which is
consistent with p⋆ = 0.23. (d) ARPES spectra at p = 0.20 versus temperature. The PG is seen to close at T ⋆ = 75 K (square in panel b).
Panel b adapted from Reference 1 with permission; panels c and d adapted from Reference 2 with permission, copyrighted by the
American Physical Society.
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Complicated Stripes-HTSC problem

Overview of pairing and coexisting
spin and charge orders
Figure 1 presents an overview of our results, a
“phase diagram” of the computed pairing-
order parameter, together with representative
spin and charge correlations. The pairing-order
parameter Dd we computed is the expectation

value of the operator
X

ijh i bij D̂ij þ D̂ij
†

! "
=2

h i
,

where D̂ij ≡ ĉi↑ĉj↓ " ĉi↓ ĉj↑
# $

=
ffiffiffi
2

p
andbij ¼ þ1 if

the bond ijh i is in the x direction andbij ¼ "1 if
ijh i is in the y direction. The pairing-order pa-
rameters have been extrapolated to the TDL,
using full TABC in large simulation cells [see
below and (37)]. We would expect this zero-
temperature property to be loosely connected
to the transition temperature (Tc) most readily
observed experimentally [however, see (38, 39)].
On both the electron- and hole-doped sides, we
find dome-like d-wave pairing orders that resem-
ble the Tc domes in the typical phase diagram of
cuprates. The pairing-order parameter is sub-
stantially larger in the hole-doped region than in
the electron-doped region, which is also con-
sistentwith the phase diagramof cuprates (40).
Spin and hole densities are shown for the

three representative systems marked as A, B,
and C. These calculations were performed with
AFM pinning fields on the edges of the cylin-
drical simulation cells (37). The spin and hole
densities thus provide a simple and convenient
way to visualize the spin and charge correla-
tions. We have taken care to ensure that the
results are drawn from very large systems and
that the spin and charge patterns are repre-
sentative of different boundary conditions. In
the electron-doped region, the spins show single-
domain antiferromagnetism with nearly uni-
formhole densities in the bulk. In the hole-doped
region, stripe and spin-density wave (SDW) cor-
relations are observed, with modulated AFM
domains separated by phase-flip lines where
holes are more concentrated. In contrast with
the pure Hubbard model, we found that the
wavelength of the modulation is not an in-
teger multiple of 1/d (filled stripes). Nor are the
stripes half-filled as seen in previous state-of-
the-art calculations (41). Rather, they are best
described as partially filled, with fractional
fillings that vary with d as well as system-size
and boundary conditions. These behaviors of
spin and charge are again consistent with the
phase diagram of the cuprates (40), in which
uniform AFM correlations persist with sub-
stantial doping on the electron-doped side but
short or long-ranged incommensurate magne-
tism and stripes are observed starting at small
doping on the hole-doped side (42, 43).
It is instructive to consider this phase dia-

gram in the context of the t-t′-Jmodel (44, 45),
which can be derived as an approximate strong-
couplingHubbardmodel at low doping. In the
t-t′-J model, recent DMRG studies all point to
strong d-wave superconductivity on the elec-

tron-doped side (44–46), which coexists with
AFM correlations with increasing strength as
t 0 increases; somedifferences remain concerning

whether long-range AFM order occurs (47). To
date, indications are that superconductivity
is weak or marginal on the hole-doped side
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Fig. 1. The d-wave pairing-order parameter as a function of doping d. Shown is the ground state for
the hole-doped (t0 ¼ "0:2) and electron-doped (t0 ¼ þ0:2) regimes. Representative spin and charge
correlations are also shown for three parameter sets: A, B, and C. Dd is the spontaneous pairing order in the
thermodynamic limit; the spin and charge (hole) patterns are drawn from the middle of 28 by 8 (A), 24
by 8 (B), and 40 by 8 (C) cylinders with AFM-spin pinning fields applied to the two edges. The vertical scale
for the hole-density plots (top of panels A, B, and C) starts at 0.1. Gray shadows for spins are to aid the eye.
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“Absence of Superconductivity in the Pure T
two-Dimensional Hubbard Model”
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“Coexistence of superconductivity with
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Fermionic QMC: sign problem vs. sign blessing
Problem: 

Blessing:

DQMC and CT-INT for large system about 8x8
Doped and particle-hole asymmetric case

R. Mondaini, S. Tarat, R. Scalettar, Science 375, 418 (2022) 

the SP itself precludes determination of d-wave
order in DQMC through “traditional” observ-
ables such as the associated correlation func-
tions. However, Fig. 4, which is based on the
behavior of the sign itself, is suggestive. We
report the average sign (Fig. 4A), the enhance-
ment of the d-wave pairing susceptibility over
its value in the absence of the pairing vertex
(57) (Fig. 4B), and the uniform, static spin
susceptibility c(q = 0) (Fig. 4C) in the T/t–m/t
plane. Figure 4, D to F, shows analogous plots
for the T/t–r plane (7).
The most salient features of this “sign phase

diagram” are (i) the “dome” of vanishing hSi
that occurs in a range of densities 0.4 ≲ r ≲ 1 as
T is lowered (Fig. 4D), (ii) the enhancement of
d-wave pairing (Fig. 4E) surrounding the sign
dome, and (iii) the magnetic properties being
also linked to the hSi dome: The trajectory
tracing the peak value of c(q = 0) as T is de-
creased terminates precisely at the top of the
dome (Fig. 4F). In isolation, the comparisons
of the behavior of the sign and the pairing
and magnetic responses in the square lattice
Hubbard model appear likely to be coinci-
dental. Indeed, the fact that the sign is worse
precisely for optimal dopings has been pre-
viously discussed, but thought to be just “bad
luck” (32, 57–59). However, that the known
QCPs of the three models discussed in the
preceding three sections can be quantita-

tively linked to the behavior of hSi suggests
that the sign domemight actually be indicative
of the presence of d-wave superconductivity.

Discussion and outlook

Early in the history of the study of the SP, a
simple connection was noted between the
fermionic physics and negative weights in
AFQMC: If one artificially constructs two
Hubbard-Stratonovich field configurations,
one associated with two particle exchanging
as they propagate in imaginary time and
another with no exchange, one finds that the
associated fermion determinants are nega-
tive in the former case and positive in the
latter. This interesting observation, however,
pertains to low density, that is, to the prop-
agation of just two electrons. Another key
observation is that the SP can be viewed as
being proportional to the exponential of the
difference of free energy densities of the orig-
inal fermionic problem and the one usedwith
the weights in the Monte Carlo sampling
taken to be positive, akin to a bosonic for-
mulation of the problem (13, 32). It highlights
how intrinsic the SP is in QMCmethods. A last
important remark is that ordered phases are
often associated with a reduction in the im-
portance of configurations that scramble the
sign. This is graphically illustrated in the snap-
shots of (24). Although less crisp, similar ef-

fects are seen in AFQMC, for example, in
considering the evolution from the attractive
Hubbard model to the Holstein model with
decreasing phonon frequency w0. Reducing w0

acts to increase the effect of the phonon po-
tential energy term P̂

2
in Ĥ, thereby straight-

ening the auxiliary field in imaginary time.
Here, we have shown that the behavior of

the average sign hSi in DQMC simulations
holds information concerning finite density
thermodynamic phases and transitions be-
tween them: the QCPs in the semimetal to
antiferromagnetic MI transition of Dirac
fermions, the BI to CM to correlated insu-
lator evolution of the ionic Hubbard Hamil-
tonian, and the QCP of spinless fermions
(even though a sign-problem free formula-
tion exists). Specifically, a rapid evolution of
hSi marks the positions of QCPs. We have
chosen these models as representative ex-
amples of QCP physics of itinerant electrons
that have been extensively studied in the
condensed-matter physics community but
speculate that the result is general. In fact,
in a model for frustrated spins in a ladder
using a completely different QMC method
(stochastic series expansion), similar con-
clusions can be inferred (60), further cor-
roborating this generality. Likewise, in the
square lattice version of the U(1) Hubbard
model that we studied here, with an added

Mondaini et al., Science 375, 418–424 (2022) 28 January 2022 5 of 6

Fig. 4. Square lattice Hubbard model. (A) Temperature dependence of the
average hSi as a function of the chemical potential m/t for a lattice with L = 16,
U/t = 6, and next-NN hopping t′/t = –0.2, values chosen to be close to
those in cuprate materials. (B) d-wave pair susceptibility (with the non-vertex
contribution subtracted) for the same parameters. (C) Corresponding static
spin susceptibility c(q = 0). The white markers describe its peak for values at
which the average sign is large enough to allow a reliable calculation, which
encompasses the pseudogap regime. See the supplementary materials (7)

for a perspective on the onset of this regime. (D to F) Corresponding diagrams
when converting to the calculated average density. The black markers depict
the actual average density extracted from the regular mesh of m used in the
upper panels and where an interpolation of the data is performed. In all
data, Trotter discretization is chosen as tDt = 0.0625. A finite-size analysis
(fig. S7), different pairing channels (fig. S8), and the behavior of the spectral
weight (figs. S9 and S10) is given in the supplementary materials (7). Equivalent
results for t′ = 0 are reported in fig. S11.
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and negative p(x). On the other hand, it is known that
simulations employing the Langevin algorithm can go
out of equilibrium when crossing nodal surfaces.
In Fig. 3 we plot (S )p as a function of P at U =4 for

the ground-state algorithm. The solid squares are for an
electron density of 0.625 and the open squares for a den-
sity of 0.875. Figures 4 and 5 show semilog plots of the
same data. Again the straight lines are least-square fits to
the large P portion of the data. We see that (S)p falls
exponentially with P for both fillings, but with very
different decay rates. The variation in decay rates with
filling and coupling are in accordance with our discussion
in the preceding section.
In Fig. 6 we again plot the logarithm of (S)z as a

function of P for U =8 with a filling of 0.625. The solid
squares are the ground-state algorithm data of Figs. 1

and 2. The open squares are from a grand-canonical-
ensemble calculation. The straight lines are again least-
squares fits to the high P portion of the data. The slopes
of the two lines agree within statistical errors, but the line
from the grand-canonical-ensemble calculation has an in-
tercept that lies somewhat below that from the ground-
state calculation. We believe that the smaller value of the
sign in the grand-canonical-ensemble simulation is due to
electron number fluctuations. Finally we note that we
have previously presented data showing that for the
grand-canonical ensemble the sign falls with increasing
spatial volume.
In all calculations that we have preformed to date, we

find strong evidence that the expectation value of the sign
falls exponentially with P. This does not mean that one
cannot obtained useful information about the ground-
state energy. As Sorella et al. have pointed out, ' it is
straightforward to calculate the P dependence of
Z++Z, because no fluctuating signs are involved.
This calculation yields the quantity Eo =Eo—b, . A mea-
surement of the P dependence of (S)p yields b„and
therefore Eo. For example, for U=8 with a filling of
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FIG. 5. The logarithm of (S)p as a function of P on a 4X4
lattice with U =4 and (n ) =0.875. The straight line is a least-
squares fit to the large P portion of the data.
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0.625 and hz=0. 1 we find Eo =Eo—b =—17.75+0.06.
Our least-squares fit to the logarithm of (S)p yields a
correction, 6=0. 126+0.002. 5 varies significantly with
filling and coupling, but in all cases that we have studied
to date, it is a small compared to Eo. It should be possi-
ble to significantly reduce the error bars on Ep, so that at
least on small lattices this approach can be used to obtain
accurate measurements of the ground-state energy as a
function of filling and coupling. Whether this procedure
or a straightforward measurement including the signs
produces superior results is likely to depend on the rela-
tive size of b and the gap to the first excited state.
Our results suggests that it may be possible to perform
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FIG. 4. The logarithm of (S)p as a function of P on a 4X4
lattice with U =4 and (n ) =0.625. The straight line is a least-
squares fit to the large P portion of the data.

FIG. 6. The logarithm of (S)p as a function of P on a 4X4
lattice with U =8 and (n ) =0.625. The solid squares are data
from the ground-state algorithm and the open squares from the
grand-canonical-ensemble algorithm. The straight lines are
least-squares fits to the large P portions of the data. The slopes
of these lines agree with statistical errors.
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U/t=6     t’/t=-0.2

DiagMC and Cdet (Riccardo Rossi)
Cancellation of high-order
Feynman diagram
10-12 order is converge
with “shifted-action” and
conformal mapping 
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Fig. 14: (a) Resummation of divergent series for ln(1+x) with x = 2 using f(n, ✏) = e�✏n2
(cir-

cles) and f(n, ✏) = e�✏n3/2
(triangles). Extrapolation to ✏ = 0 was performed using parabolic

fits. Partial sums
P[✏]

1 (�x)n+1/n are shown by open squares. The value ln 3 is marked by the

diamond on the vertical axis. (b) Moving a simple-pole and increasing the convergence radius

using conformal mapping.

The above protocol is blind to specific properties of the series and may require knowledge of
many terms in the series for reliable extrapolation, especially for less “aggressive” f -functions.
More efficient methods exist when the reason for reaching the convergence radius is known
better. Suppose that the series behaves as dn = �nxn with �n = (�1)n and M = 10 terms
are known. The goal is get an answer for x = 3, well outside of the radius of convergence.
From available information one can roughly estimate the convergence radius, and produce con-
stant phase lines y(x) for the complex function Q(z = x + iy) =

PM
n �nzn to establish that

a simple pole is located close to the real axis, say at z0 ⇡ �1.05. Next, one performs a con-
formal mapping w = z/(z � z0), or z = �wz0/(1 � w) and constructs the Taylor series for
Qw(w) =

PM
n �nwn. The final answer is given by Qw(x/(x � z0)); with extraordinary accu-

racy it reproduces 1/(1 + x) = 0.25. Under conformal mapping the singularities are moved
away from the origin of the expansion and the point of interest ends up well within the radius
of convergence, see the illustration in Fig. 14(b).

Similarly, it is possible to handle poles of higher order or several poles, but high accuracy rests
on the number of known terms in the series. A slightly different version of the method is known
as extrapolation by Padé approximants. One assumes that the function behind the series is given
by the ratio of two polynomials, Q(z) = Pk(z)/Pm(z), with k +m  M . For each (k,m) pair
the polynomials are determined by matching the coefficients of the Taylor series for the ratio to
�n. The final answer is determined by examining how Pk(x)/Pm(x) depends on (k,m) when
we increase the order of polynomials.

Conformal mappings can be also used to improve the convergence properties of series by mov-
ing branch cuts away from the origin. The ratio of polynomials can be replaced by the ratio
of hypergeometric functions to achieve efficient extrapolation in cases when the convergence
radius is limited by the branch cuts [7]. The mathematical and physical literature on the topic
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Weak and Strong coupling: QMC
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JETP Lett. 64, 911 (1996), Sov. Phys. JETP 87, 310 (1998)
N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 81, 2514 (1998)
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A. Rubtsov, V. Savkin, and A. L., Phys. Rev. B 72, 035122 )2005)

CDet: 
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Diagrammatic Monte Carlo 15.3
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Fig. 1: Graphical representation of the diagrammatic expansion for the Green function of an

interacting many-body system.

There are well-established diagrammatic series for other quantities of interest such as self-
energies, polarization operators, pair-propagators, current-current and other correlation func-
tions, etc. Numerous alternative representations of quantum and classical models, such as path
integrals and impurity solvers, are mathematically identical to Eq. (1). Thus, regardless of the
origin of Eq. (1), it can be viewed as a mathematical expression for the answer in terms of a
series of multi-dimensional integrals. The real challenge is to evaluate it with high accuracy.
Let us denote the collection of all external and internal parameters that lead to a complete char-
acterization of the diagram as ⌫ = (n,T;x1, . . . ,xn;y), and call it the “configuration space;” a
particular set of parameters has to be viewed as a point in {⌫}. Accordingly, the modulus of D⌫

will be called the configuration “weight.” Since, in general, the D-function is not sign-positive,
we will need to introduce also the configuration “phase,” '⌫ = argD⌫ (the diagram phase is
not necessarily equal to 0 or ⇡).

2.1 Updates: general principles

The MC process of generating diagrams with probabilities proportional to their weight is based
on the conventional Markov-chain updating scheme [2–4] implemented directly in the space of
continuous variables. All updates are broadly classified as type-I and type-II. The number of
continuous variables is not changed in type-I updates that perform sampling of diagrams of the
same order n. Typical examples are shown in Fig. 2. They are based on the simplest possible
local modifications of the topology and line parameters allowed by the rules and conservation
laws. Their implementation is straightforward; e.g., for the update illustrated in Fig. 2(a) select
at random any pair of consecutive interaction vertices and exchange their places. An acceptance
ratio for the corresponding update, R⌫!⌫0 , is given by the ratio of the diagram weights,

R⌫!⌫0 = |D⌫0/D⌫ | , (2)

which is easily calculated, since D⌫ is the product of Fline-functions and only three of them
change their values in this update. Changing internal or external variables, see Figs. 2(b) and
2(c), is also standard. For example, one may select at random some interaction vertex and
propose a new value for its time variable, ⌧i ! ⌧ 0i , from the (arbitrary) normalized probability
density P (⌧ 0i). The acceptance ratio for this update is given by the ratio of probabilities for
suggesting the ⌫ ! ⌫ 0 and ⌫ 0 ! ⌫ moves times the ratio of the diagram weights

R⌫!⌫0 =

����
D⌫0

D⌫

����
P (⌧i)d⌧

P (⌧ 0i)d⌧
=

����
D⌫0

D⌫

����
P (⌧i)

P (⌧ 0i)
. (3)

Strong:   U>>t  complicated perturbation diagram

CT-QMC: CT-HYB (”det D”)
P. Werner, A. Comanac, L. de’ Medici, M. Troyer, A. Millis
Phys. Rev. Lett. 97, 076405 (2006).
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Fig. 16: By connecting all outgoing arrows to incoming ones with the same spin index, one

obtains a Feynman diagram for the partition function. Free energy density diagrams must form

a connected graph.

5.2 Determinant method for connected diagrams

An efficient method for computing D̄ for expansions in the coupling constant was developed by
Rossi in Ref. [12]. It rests on the simple observation that the sum of all connected topologies
can be obtained from the sum of all topologies by subtracting disconnected ones. To be spe-
cific, consider the fermionic Hubbard model and Feynman diagrams for the free energy density.
Given space-time positions of interaction vertexes X1, . . . Xn, where Xi = (ri, ⌧i), all topolo-
gies are generated by establishing pairwise associations between the incoming and outgoing
arrows with the same spin index, as in Fig. 16. Apart from the global factor (�U)n, the dia-
gram contribution is given by the product of all Green functions and the sign rule based on the
number of fermionic loops. According to this rule, each time one swaps the destination points
for two propagators the number of loops changes by ±1 and this leads to an additional factor
of �1. Thus, the sum over all possible topologies forms a determinant (44).
Let us introduce a short-hand notation for the collection of all vertex coordinates, V = {Xi},
any proper subset of coordinates, S ( V, the sum over all topologies (determinant) for a
given set of coordinates, det(V ), and the sum over all connected topologies, C(V ). Then, by
subtracting from det(V ) all disconnected cases, we obtain C(V )

C(V ) = det(V )�
X

S(V

C(S) det(V \S) . (49)

This is a set of recursive equations for connected contributions after similar equations are written
for subsets of V. Its coefficients are based on determinants and the cost of computing all of them
scales as n3 2n, where 2n comes from the combinatorial number of possible proper subsets,Pn�1

m=1 n!/m!(n � m)!. The number of arithmetic operations required to solve these recursive
equations is / 3n—in the large n limit this is the main computational cost.
In this scheme, the effort is exponential in the diagram order and this is certainly an enormous
improvement compared to the (n!)2 scaling of the total number of connected graphs. After sum-
mation over {Xi} one should not forget to divide the n-th order contribution by n! to account
for the indistinguishability of the vertices. One can use this scheme (or its generalizations) to
compute connected diagrams for any correlation function [12], proper self-energy [13, 14], and
even semi-skeleton series; in the latter case, however, the computational cost will increase to
roughly 6n.
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DF-exact diagrammatics
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DF-QMC scheme: Real Space
Hamiltonian
The simplest model describing interacting fermions on a lattice is the single band Hub-
bard model, defined by the Hamiltonian

Ĥ↵ =
X

i, j,�

t
↵
i j

c
†
i�c

j� +
X

i

U(ni" �
1
2

)(ni# �
1
2

) (1)

where ti j is the hopping matrix elements including the chemical potential µ in the di-
agonal elements.

t
↵
i j
=

8>>>>>>>><
>>>>>>>>:

t if i and j are nearest neighbours,
↵t
0 if i and j are next nearest neighbours,
↵µ if i = j,

0 otherwise,

(2)

where ni� = c
†
i�c

i�. We introduce a ”scailing” parameter ↵ = 0, 1, which defined a
reference system H0 for ↵ = 0 which corresponds to the half-field Hubbard model
(µ0 = 0) with only nearest neighbours hoppings (t00 = 0) and final system H1 for ↵ = 1
for given µ and t

0. Notes, that long-range hoping parameters can br trivially included
similar to t

0.

Real space scheme
For the super-perturbation in the lattice Monte-Carlo scheme we use a general dual-
fermion expansion around arbitrary reference system within the path-integral formal-
ism [27, 24] similar to a strong coupling expansion [43]. In this case our N ⇥ N

lattice and corresponding refverence systems represent N ⇥ N-part which we cut from
infinite lattice and periodise the bare Green’s function G↵. The general lattice action
for discretise N ⇥ N ⇥ L space-time lattice (for CT-INT scheme imaginary time space
⌧ is continous in the [0, �) interval) with Hamiltonian Eq. (1) reads

S ↵[c⇤, c] = �
X

1,2

c
⇤
1 (G↵)�1

12 c2 +
1
4

X

1234

U1234c
⇤
1c
⇤
2c4c3 . (3)

In order to keep the notation simple, it is useful to introduce the combined index
|1i ⌘ |i, ⌧,�i (i being the site index suppressed above) while assuming summation
over repeated indices.

To calculate the bare propagators (G↵)12 we start from the N ⇥ N cluster which is
cutted from infinite lattice and then force translation symmetry and periodic boundary
condition on the finite N ⇥ N system. This procedure is easy to realized in the k-space,
by doing first a double Fourier transform of the bare Green’s function for non-periodic
N ⇥ N cluster G↵k,k0 and then keep only periodic part, G↵k�k,k0 .

Perturbation matrix of one-electron part of Action:

t̃ = G�1
0 � G�1

1 . (4)
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Perturbation:

Dual Action:

Figure 7: Feynman diagram for the first order dual fermion perturbation for the self-
energy e⌃12(⌫): a line represents the non-local dual Green’s function eG43(⌫0) and a box
is the two-particle vertex (cumulant) �1234, (�,�0) are spin-indices.

The dual action in paramagnetic state reads

S̃ [d⇤, d] = �
X

12 ⌫�
d
⇤
1⌫� (G̃0

⌫)
�1
12 d2⌫� +

1
4

X

1234

�1234d
⇤
1d
⇤
2d3d4, (5)

where the bare dual Green’s function has the following matrix form:

G̃
0
12 =
h

t̃
�1 � ĝ

i�1

12
(6)

with g being exact Green’s matrix of the interacting referemnce system.
We used the following notation for the four-point vertex:

�1234 = hc1c
⇤
2c4c

⇤
3i � hc1c

⇤
2ihc4c

⇤
3i + hc1c

⇤
3ihc4c

⇤
2i (7)

The first order for the vertex in particle-hole (PH) channel is given by the diagram
shown in Fig.7

⌃̃(1)
12 = �

X

s�QMC

X

3,4

�d

1234(s)G̃0
34 (8)

Here the density vertex in PH channel is

�d
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""""
1234 + �

""##
1234 (9)

and the final Green’s function reads

G12 =
⇣

g + ⌃̃
⌘�1 � t̃

��1

12
(10)

Within the determinant DQMC with Ising-fields {s} or inside the CT-INT with
stochastic sampling of interaction order expancion {s} for two-particle correlators we
can use the Wick-theorem:

�1234(s) ⌘ hc1c
⇤
2c3c

⇤
4is = hc1c

⇤
2is hc3c

⇤
4is � hc1c

⇤
4is hc3c

⇤
2is (11)
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K space scheme
For large system (N � 4) it is much faster to calculate the dual self-energy in the
K-space with within the QMC Markov chain. The dual action in K-space reads

S̃ [d⇤, d] = �
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⇤
1d
⇤
2d3d4 . (12)

Using the short notation k ⌘ (k, ⌫n) and ⌫n = (2n + 1)⇡/�, with n 2 Z, the dual Green’s
function is equal to

G̃
0
k
=
⇣
t̃
�1
k
� ĝk

⌘�1
. (13)

Since the bare dual Green’s function calculated in the independent QMC run for
the reference system, it is fully translationally invariant G̃

0
34 ⌘ G̃

0(3 � 4) and we used
Fourier transform to calculate the K-space dual Green’s function G̃

0
k
.

Within the QMC Markov chain the lattice auxilary Green’s function is not trans-
lationally invariant therefore g

s

12 = �hc1c
⇤
2is and we use double Fourier transform to

calculate g
s

kk0 . To include ”disconnected part” of the vertex in equation Eq. (7) we just
substract exact Green’s function from the previus QMC run of the reference system as
following

g̃
s

12 = g
s

12 � g12 (14)

In the K-space this subtractions has the following form

g̃
s

kk0 = g
s

kk0 � gk�kk0 (15)

For transformation of the vertex �d

1234 in Eq. (9)within the QMC step in the K-space
we take into account that indices 3, 4 are ”diagonal” in k-spcae due to multiplication
by translationally invariant dual Green’s function G̃

0
34 which transforms as G̃

0
k
�kk0 and

indices 1, 2 become translationally invariant after QMC-summation, which finally leads
us to the following equation for final spin-up components of the first order dual self-
energy ⌃̃k

⌃̃(1)
k
=

�1
(�N)2ZQMC

X

s�QMC

X

k0

h
g̃
""
kk

g̃
""
k0k0 � g̃

""
kk0 g̃

""
k0k + g̃

""
kk

g̃
##
k0k0

i
s
G̃

0
k0 (16)

Additional normalisation factor 1
(�N)2 comes from the Fourier transform in k and from

the k0-sum with N-lattice cites and summation over Matsubara frequency: 1
�

P
⌫0 (...).

For paramagnetic calculations we average over two spin projections.
Corresponding lattice Green’s function reads:

Gk =
⇣

gk + ⌃̃k

⌘�1 � t̃k

��1
. (17)

Finally, we note, that if we neglect the dual self-energy, ⌃̃k = 0, this approximation is
equivalent to so-called cluster-perturbation theory (CPT) for N ⇥ N system [44].
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Super-DF-QMC 2x2 compare with exact QMC

DISCUSSION
There appears to be a close relation between the physics of
cuprate superconductors, with the clear existence of a quantum
critical point at δc ≈ 0.24, and the degeneracy of the plaquette in
the strong-coupling regime. In this sense, the plaquette and not
the single site can be considered the minimal building block for
cuprate physics, with pair binding arising in a lattice of plaquettes.
Exact diagonalization shows that the cluster pair binding

energy is dramatically enhanced when four plaquettes are
considered together, compared to the pair binding energy in a
single plaquette. Given their large binding energy, these pairs
should probably exist also at much higher temperatures than the
superconducting critical temperature, remaining noncoherent.
The exact diagonalization also shows the important role played
by the next-nearest hopping t0, with a large pair-binding energy
at t0=t ! "0:3.
Dual fermion expansion starting from the plaquette reference

system provides a complementary way to investigate inter-
plaquette correlations. For the doping δ ≤ 0.25 the dual Bethe-
Salpeter equation clearly shows the presence of a low tempera-
ture dx2"y2 instability, which has an eigenvalue substantially larger
than the magnetic channel. Starting from the degenerate
plaquette, fluctuations in the density channel are also very strong,
but these seem to be less robust against changes in the filling.
The exact diagonalization of the 4 × 4 cluster as well as

renormalized dual fermion perturbation starting from the
plaquette reference system with δ= 0.25 also uncovers spectral
consequences of this degeneracy. The formation of the
pseudogap can be seen as the destructive interference or a
Fano-like effect originating from the sharply peaked DOS in the
isolated plaquette embedded into the band of surrounding
fermions, as was hypothesised in ref. 17. These observations
about the mechanisms of superconductivity can all be made by
starting the perturbation theory from an isolated plaquette. For
more quantitative predictions of the theoretical phase diagram,
the optimal dynamical embedding of the plaquette and the
implications for the resulting perturbation theory need to be
studied further.

METHODS
Cluster Dual Fermion approach
We used the standard exact diagonalization method30 for small systems
as well as the special version of the cluster dual fermion scheme23,26 for
t " t0 " U square lattice Hubbard model. The general strategy of the
dual fermion approach is related to formally exact separation of the
local-plaquette and non-local hybridization (Fig. 7). The details of

the path-integral formulation of this approach can be found in the
Supplementary Note 1.
We start from the following general lattice action and rewrite it as a sum

of non-connected plaquette reference systems and the remaining
coupling term:

SL½c$; c% ¼ "
P
kνσ

c$kνσ iν þ μ" t̂k
! "

ckνσ þ
P
i

R β
0 dτ Un$iτ"niτ#

¼
P
i
SΔ½c$i ; ci % þ

P
kνσ

c$kνσ t̂k " Δ̂ν

# $
ckνσ;

(3)

where ν= (2k+ 1)π/β, with k 2 Z, are the fermionic Matsubara frequen-
cies, β is the inverse temperature, τ is the imaginary time in the interval
0; β½ Þ, μ is the chemical potential, t̂k is the hopping matrix downfolded
onto the site-orbital space of the plaquette (see Eq. (11) below), and the
Grassmann fields c, c* are vectors in the same space. The index i labels the
lattice sites, σ is the spin projection and the k-vectors are supercell
plaquette quasimomenta. In order to keep the notation simple, it is useful
to introduce the combined index 1j i ) i; n; σ; τj i (n being the plaquette
site index suppressed above) while assuming summation over repeated
indices. The summation over Matsubara frequencies ν includes a normal-
ization factor 1/β and the k integration is normalized by the volume of the
reduced Brillouin zone.
The general reference system is defined by a plaquette matrix Δ̂ν , which

is also allowed to be instantaneous24 (ν-independent). It can contain
hopping inside the cluster as well as possible frequency-dependent
connections to an auxiliary fermionic bath. The reference plaquette has the
same local plaquette interaction matrix Û, as illustrated in Fig. 7, and the
corresponding action is:

SΔ½c$i ; ci % ¼ "
X

ν ;σ

c$iνσ iν þ μ" Δ̂ν

! "
ciνσ þ

X

ν

Ûn$iν"niν#: (4)

In this work, we restrict ourselves to instantaneous Δ̂. The main motivation
for using the simple static Δ̂ is that such a reference system can be solved
numerically using Exact Diagonalization (ED), without the introduction of
“bath sites” and fitting parameters, and without the numerical costs and
noise of continuous-time Quantum Monte Carlo (CT-QMC)23,52, which is
able to treat general, frequency-dependent hybridization Δ̂ν . In this work,
we use an isolated plaquette cluster with periodic boundary conditions as
the reference model, see Eq. (12).
Having solved the reference system exactly, including the calculation of

all relevant correlation functions, we can derive an efficient perturbation
series in the “coupling term” ~tkν ) t̂k " Δ̂ν

# $
which is equivalent to solving

of the effective dual fermion (d*, d) action and describes non-local
correlation effects beyond the reference plaquette23,23:

~S½d$; d% ¼ "
X

k νσ

d$kνσ ~G
"1
0kν dkνσ þ

1
4

X

1234

γP1234d
$
1d

$
2d3d4; (5)

where the bare dual Green function has the form

~G
0
kν ¼ ~t"1

kν " ĝν
% &"1

; (6)

with ĝν being the local Green’s function matrix for the plaquette. The
vertex γP is given by the connected part of the local two-particle

Fig. 7 Plaquette lattice. Schematic representation of a plaquette reference system for the square lattice.
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Fig. 9 | K space dual fermion CT-QMC results.Matsubara Green’s functions
Re G(k, ωn) (left) and Im G(k, ωn) (right) for dual fermion CT-INT QMC (Dual) in
comparison with exact CT-INT results (Reference) for all 6 nonequivalent k-points

on (4 × 4) lattice with U/t = 5.6, t0=t ¼ "0:3 and μ/t =− 0.9 and different inverse
temperature: β = 5 (a, b), β = 10 (c, d), β = 10 (e, f).

Fig. 8 | Real space dual fermion QMC results. Three non-equivalent real-space
components of the Green’s functions for 2 × 2 system as a function of imaginary
time for U = 5.56, β = 5 and μ =− 0.3, t0=t ¼ 0 (a) and μ =− 1.3, t0=t ¼ "0:15 (b)

with DF-QMC (full lines) and exact DQMC (points). Note that in Hirsch-Fay
DQMC we use definition with positive local Green’s function.
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DF-QMC scheme: K - Space
Action in Fourier-space

K space scheme
For large system (N � 4) it is much faster to calculate the dual self-energy in the
K-space with within the QMC Markov chain. The dual action in K-space reads

S̃ [d⇤, d] = �
X

k ⌫�
d
⇤
k⌫� G̃

�1
0k⌫ dk⌫� +

1
4

X

1234

�1234d
⇤
1d
⇤
2d3d4 . (12)

Using the short notation k ⌘ (k, ⌫n) and ⌫n = (2n + 1)⇡/�, with n 2 Z, the dual Green’s
function is equal to

G̃
0
k
=
⇣
t̃
�1
k
� ĝk

⌘�1
. (13)

Since the bare dual Green’s function calculated in the independent QMC run for
the reference system, it is fully translationally invariant G̃

0
34 ⌘ G̃

0(3 � 4) and we used
Fourier transform to calculate the K-space dual Green’s function G̃

0
k
.

Within the QMC Markov chain the lattice auxilary Green’s function is not trans-
lationally invariant therefore g

s

12 = �hc1c
⇤
2is and we use double Fourier transform to

calculate g
s

kk0 . To include ”disconnected part” of the vertex in equation Eq. (7) we just
substract exact Green’s function from the previus QMC run of the reference system as
following

g̃
s

12 = g
s

12 � g12 (14)

In the K-space this subtractions has the following form

g̃
s

kk0 = g
s

kk0 � gk�kk0 (15)

For transformation of the vertex �d

1234 in Eq. (9)within the QMC step in the K-space
we take into account that indices 3, 4 are ”diagonal” in k-spcae due to multiplication
by translationally invariant dual Green’s function G̃

0
34 which transforms as G̃

0
k
�kk0 and

indices 1, 2 become translationally invariant after QMC-summation, which finally leads
us to the following equation for final spin-up components of the first order dual self-
energy ⌃̃k

⌃̃(1)
k
=

�1
(�N)2ZQMC

X

s�QMC

X

k0

h
g̃
""
kk

g̃
""
k0k0 � g̃

""
kk0 g̃

""
k0k + g̃

""
kk

g̃
##
k0k0

i
s
G̃

0
k0 (16)

Additional normalisation factor 1
(�N)2 comes from the Fourier transform in k and from

the k0-sum with N-lattice cites and summation over Matsubara frequency: 1
�

P
⌫0 (...).

For paramagnetic calculations we average over two spin projections.
Corresponding lattice Green’s function reads:

Gk =
⇣

gk + ⌃̃k

⌘�1 � t̃k

��1
. (17)

Finally, we note, that if we neglect the dual self-energy, ⌃̃k = 0, this approximation is
equivalent to so-called cluster-perturbation theory (CPT) for N ⇥ N system [44].
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� ĝk

⌘�1
. (13)

Since the bare dual Green’s function calculated in the independent QMC run for
the reference system, it is fully translationally invariant G̃

0
34 ⌘ G̃

0(3 � 4) and we used
Fourier transform to calculate the K-space dual Green’s function G̃

0
k
.

Within the QMC Markov chain the lattice auxilary Green’s function is not trans-
lationally invariant therefore g

s

12 = �hc1c
⇤
2is and we use double Fourier transform to

calculate g
s

kk0 . To include ”disconnected part” of the vertex in equation Eq. (7) we just
substract exact Green’s function from the previus QMC run of the reference system as
following

g̃
s

12 = g
s

12 � g12 (14)

In the K-space this subtractions has the following form

g̃
s

kk0 = g
s

kk0 � gk�kk0 (15)

For transformation of the vertex �d

1234 in Eq. (9)within the QMC step in the K-space
we take into account that indices 3, 4 are ”diagonal” in k-spcae due to multiplication
by translationally invariant dual Green’s function G̃

0
34 which transforms as G̃

0
k
�kk0 and

indices 1, 2 become translationally invariant after QMC-summation, which finally leads
us to the following equation for final spin-up components of the first order dual self-
energy ⌃̃k

⌃̃(1)
k
=

�1
(�N)2ZQMC

X

s�QMC

X

k0

h
g̃
""
kk

g̃
""
k0k0 � g̃

""
kk0 g̃

""
k0k + g̃

""
kk

g̃
##
k0k0

i
s
G̃

0
k0 (16)

Additional normalisation factor 1
(�N)2 comes from the Fourier transform in k and from

the k0-sum with N-lattice cites and summation over Matsubara frequency: 1
�

P
⌫0 (...).

For paramagnetic calculations we average over two spin projections.
Corresponding lattice Green’s function reads:

Gk =
⇣

gk + ⌃̃k

⌘�1 � t̃k

��1
. (17)

Finally, we note, that if we neglect the dual self-energy, ⌃̃k = 0, this approximation is
equivalent to so-called cluster-perturbation theory (CPT) for N ⇥ N system [44].

11

Subtraction of disconnected part:

Lattice Green’s function

K space scheme
For large system (N � 4) it is much faster to calculate the dual self-energy in the
K-space with within the QMC Markov chain. The dual action in K-space reads

S̃ [d⇤, d] = �
X

k ⌫�
d
⇤
k⌫� G̃

�1
0k⌫ dk⌫� +

1
4

X

1234

�1234d
⇤
1d
⇤
2d3d4 . (12)

Using the short notation k ⌘ (k, ⌫n) and ⌫n = (2n + 1)⇡/�, with n 2 Z, the dual Green’s
function is equal to

G̃
0
k
=
⇣
t̃
�1
k
� ĝk
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DF-QMC 8x8 CT-INT
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Figure 1: Schematic representation of a half-filled reference system for the doped
square lattice. Bellow: calculated density of states (DOS) in presented scheme for
U = 8, Left: undoped case µ = 0 with t

0 = 0, Right: doped case µ = �2 with t
0 = 0.3
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Matsubara Green’s Function
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Figure 3: Spectral function �1/⇡=G(k,!) for two di↵erent k-points corresponds to
anti-nodal and nodal k-points dual fermion QMC (CT-INT) for (8 ⇥ 8) lattice with
U/t = 8 t

0/t = �0.3, µ = �2.0 and � = 10 .
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Figure 4: Spectral function �1/⇡=G(k,!) for three di↵erent k-directions in the Bril-
louin Zone, (left) ��X, (middle) X�M and (right) (��M) dual fermion QMC (CT-INT)
for (8 ⇥ 8) lattice with U/t = 8 t

0/t = �0.3, µ = �2.0 and � = 10 .
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Figure 5: Green’s function G(k,!n) on the Matsubara axes for all 16 non-equivalent
k-points in the Brillouin Zone for 8 ⇥ 8 system, (left) Real part and (right) imaginary
part for dual fermion QMC (CT-INT) with U/t = 8 t

0/t = �0.3, µ = �2.0 and � = 10 .
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DF-QMC for 8x8: Spectral Function
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Figure 2: Spectral function �1/⇡=G(k,!) for dual fermion QMC (CT-INT) for (8⇥ 8)
lattice with U = 8, t

0/t = �0.3, µ = �2.0, and � = 10.
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Nodal-Antinodal dichotomy
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Figure 3: Spectral function �1/⇡=G(k,!) for two di↵erent k-points corresponds to
anti-nodal and nodal k-points dual fermion QMC (CT-INT) for (8 ⇥ 8) lattice with
U/t = 8 t

0/t = �0.3, µ = �2.0 and � = 10 .
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Figure 4: Spectral function �1/⇡=G(k,!) for three di↵erent k-directions in the Bril-
louin Zone, (left) ��X, (middle) X�M and (right) (��M) dual fermion QMC (CT-INT)
for (8 ⇥ 8) lattice with U/t = 8 t

0/t = �0.3, µ = �2.0 and � = 10 .

0 2 4 6 8 10
ω

-0.1

0

0.1

0.2

0.3

0.4

R
eG

(iω
 , 

k)

0, 0
π/4, 0
π/2, 0
3π/4, 0
π, 0
π/4, π/4
π/2, π/4
3π/4, π/4
π, π/4
π/2, π/2
3π/4, π/2
π, π/2
3π/4, 3π/4
π, 3π/4
π, π

n

n

0 2 4 6 8 10
ω

-0.5

-0.4

-0.3

-0.2

-0.1

Im
G

(iω
 , 

k)

0, 0
π/4, 0
π/2, 0
3π/4, 0
π, 0
π/4, π/4
π/2, π/4
3π/4, π/4
π, π/4
π/2, π/2
3π/4, π/2
π, π/2
3π/4, 3π/4
π, 3π/4
π, π

n

n

Figure 5: Green’s function G(k,!n) on the Matsubara axes for all 16 non-equivalent
k-points in the Brillouin Zone for 8 ⇥ 8 system, (left) Real part and (right) imaginary
part for dual fermion QMC (CT-INT) with U/t = 8 t

0/t = �0.3, µ = �2.0 and � = 10 .

7



Superconductivity: D-wave instability
Perturbation action with external symmetry breaking fields

Bare Dual Green’s Function – Spinor From

Dual Self-energy – Spinor From

Perturbation:

�S =
X

k,⌫,�
c
⇤
k,⌫,� t̃k,⌫ck,⌫,� +

X

k,⌫
�k

⇣
c
⇤
k,⌫,"c

⇤
�k,�⌫,# � c�k,�⌫,"ck,⌫,#

⌘
. (62)

One can use the Nambu representation by introducing ⇤k,⌫ =
⇣
c
⇤
k,⌫,"; c�k,�⌫,#; c

⇤
k,⌫,#; c�k,�⌫,"

⌘
.

Note, that in this case the sum over k should again be taken over the full BZ with
the coe�cient 1/2. In the Nambu representation the remaining part of the action
has the form of the matrix that is block diagonal, so one can focus on the subspace
 ⇤k,⌫ =

⇣
c
⇤
k,⌫,"; c�k,�⌫,#

⌘
and  k,⌫ =

⇣
ck,⌫,"; c

⇤
�k,�⌫,#

⌘T

, and the summation over k is taken
without the coe�cient 1/2. After performing standard dual transformations, one gets
the dual fermion action:

S̃ = � Tr
X
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'⇤k,⌫

h
G̃�1
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i
'k,⌫

+
1
4
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, (63)

where '⇤k,⌫ =
⇣

f
⇤
k,⌫,"; f�k,�⌫,#

⌘
and 'k,⌫ =

⇣
fk,⌫,"; f

⇤
�k,�⌫,#

⌘T

. The bare dual Green’s func-
tion in the considered subspace has the following form:

G̃⌫ =
2
666664

"
"̃k �k
�k �"̃�k

#�1

�
 
g
"
k

0
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!3777775
�1

. (64)

The bare dual Green’s function

G̃⌫ =
2
666664
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�
0
BBBB@
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"
k,⌫ 0
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1
CCCCA

3
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. (65)

Here, we defined the composite index k 2 {k, ⌫}. The lattice Green’s function can
thus be found using the relation with the dual self-energy written in the matrix form:

G⌫ =

2
6666664

2
66664
g
"
k
+ ⌃̃""

k,k ⌃̃"#
k,�k

⌃̃#"�k,k �g
#
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� ⌃̃##�k,�k
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. (66)
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Using the short notation k ⌘ (k, ⌫n) and ⌫n = (2n + 1)⇡/�, with n 2 Z, the dual Green’s
function is equal to

G̃
0
k
=

⇣
t̃
�1
k
� ĝk

⌘�1
. (32)

We discuss now external AFM field with Q=(⇡, ⇡) or Dw field with (Q=0) which
both proportional to �x Pauli matrix and acts only for ↵ = 1 in Eq.(1) which lead to
new ”perturbation” matrix of one-electron part of Action:

t̃k(hQ) = G�1
0 � G(hQ)�1

1 = t̃k + h�x�k,Q (33)

In the case of AFM external field we have general (complex) the spinor form of
perturbation

t̃k(hQ) =
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!
(34)

Therefore the bare Dual Green’s function has the following spinor form
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Zhenya is this better?
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For-wave HTSC field (Q=0) but k-dependent:

�k = hdw(cos kx � cos ky) (37)

with corresponding dual-perturbation

t̃k(hdw) =
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and HTSC-field bare dual Green’s function
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Since the bare dual Green’s function calculated in the independent QMC run for
the reference system, it is fully translationally invariant G̃

0
34 ⌘ G̃

0(3 � 4) and we used
Fourier transform to calculate the K-space dual Green’s function G̃

0
k
.

In the K-space the subtractions of disconnected part has the following form

g̃
s

kk0 = g
s

kk0 � gk�kk0 (40)

For transformation of the vertex �d

1234 in Eq. (20)within the QMC step in the K-
space we take into account that indices 3, 4 are ”diagonal” in k-spcae due to multiplica-
tion by translationally invariant dual Green’s function G̃

0
34 which transforms as G̃

0
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�kk0

and indices 1, 2 become translationally invariant after QMC-summation, which finally
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leads us to the following equation for final spin-up components of the first order dual
self-energy ⌃̃k in the spinor-form with normalization Z = (�N)2

ZQMC
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"
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k0 (44)

Additional normalisation factor 1
(�N)2 comes from the Fourier transform in k and from

the k0-sum with N-lattice cites and summation over Matsubara frequency: 1
�

P
⌫0 (...).

For paramagnetic calculations we average over two spin projections.
In the all formulas of Eq. 44 we need to change: For AFM-field:
g
#
kk0 =) g

#
(k+Q),(k0+Q)

adn for d-sc field with ”Particle-Hole transform”
g
#
kk0 =) �g

#
�k0,�k

.
Corresponding lattice matrix Green’s function reads:

Gk =
⇣

gk + ⌃̃k

⌘�1 � t̃k

��1
(45)

In the case of AFM-field we have final Green’s function for paramagnetic reference
system

Gk =
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666664
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with ⌃̃#"
k
=

⇣
⌃̃"#

k

⌘⇤
. Final magnetic moment can be calculated via

m =
X

k

Tr(�x Gk) (47)

which include Matsubara sum with factor 1
�

For the HTSC-field corresponding Green’s function reads

Gk =
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(48)

The final superconducting order parameter reads

� =
X

k

Tr(�x Gk)(cos kx � cos ky) (49)
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Additional normalisation factor 1
(�N)2 comes from the Fourier transform in k and from

the k0-sum with N-lattice cites and summation over Matsubara frequency: 1
�

P
⌫0 (...).

For paramagnetic calculations we average over two spin projections.
Corresponding lattice matrix Green’s function reads:

Gk =
⇣

gk + ⌃̃k

⌘�1 � t̃k

��1
(32)

In the case of AFM-field we have final Green’s function for paramagnetic reference
system
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with ⌃̃#"
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=
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. Final magnetic moment can be calculated via

m =
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which include Matsubara sum with factor �
For the HTSC-field corresponding Green’s function reads
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with final superconducting order parameter

� =
X

k

Tr(�x Gk)(cos kx � cos ky) (36)
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Fermi Surface and d-waves:
Superconductivity of the “bad” electrons
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ED 4x4 cluster: Local Pairs

point becomes U/t = 5.56 in contrast with the case of an isolated plaquette [17]. This119

is in a very good agreement with the value of the Coulomb interaction U/t = 5.6 that120

was found in the diagrammatic Monte Carlo calculations [28] in a search of pseudo-121

gap formation, and the value of U/t ⇡ 6 pointed out in the recent review [8] as the122

most reasonable value of the e↵ective Hubbard interaction for cuprates. Note also that123

periodic boundary conditions e↵ectively double t
0 compared to t, which explains the124

chosen value of the NNN hopping twice smaller than in Ref. [17]. At a special value125

of the chemical potential [17] µ ⇡ 0.48 the ground state for the half-filled N = 4 anti-126

ferromagnetic singlet is degenerate with the singlet for N = 2 electrons and with two127

doublets from N = 3 sector. For these values of the parameters the plaquette state128

corresponds to the hole doping of �c = 0.25.129

In the dual perturbation theory, starting from a degenerate plaquette point leads to130

divergences in the perturbation series. For the Kondo problem, the dual perturbation131

starting from the atomic limit [29] has a divergent local four-point vertex at low tem-132

perarure, while the Green’s function is finite. In the case of the degenerate plaquette133

both the single-particle and two-particle Green’s functions of the reference system are134

divergent.135

We will also consider reference systems di↵ering from the degenerate point in the136

value of the chemical potential. For smaller µ ⇡ 0 (marked with the circle in Fig. 1) the137

lattice would tend to a metallic behavior, for larger µ ⇡ 0.8 (marked with the square)138

the perturbation for the lattice results in a superconducting dx2�y2 instability.139

RESULTS140

Short-ranged correlations: exact diagonalization of 4⇥4 cluster141

To understand why superconductivity occurs, it is necessary to find a pairing mecha-
nism, i.e., an attractive interaction between pairs of fermions. Although a phase tran-
sition can only occur in the thermodynamic limit, finite-size simulations can already
point towards the energetic mechanism. We calculated the pairing energy of two holes
on the 4⇥4 periodic cluster – which consists of four 2⇥2 plaquettes – through the
ground state energies in the di↵erent occupation sectors,

�2h = Ẽ2h � 2Ẽ1h, (1)

where the energies are measured relative to the half-filled ground states E0 with no142

holes, ẼNh = ENh�E0. Note, that �2h < 0 signals pairing. By construction, �2h = 0 for143

U = 0 and U � t, so it measures genuine correlation e↵ects. Calculated energies for144

t
0 = 0 are in perfect agreement with the standard exact diagonalization (ED) results[30].145

Figure 2 shows the pair binding energy �2h between pairs of holes for a 4⇥4 cluster146

t�t
0�U Hubbard model with periodic boundary conditions as a function of interactions147

strength U for di↵erent next-nearest neighbours hopping t
0. A striking observation is148

that switching on non-zero negative t
0/t leads to a distinct minimum in the �2h depen-149

dence on U. It can be attributed to the change of the ground state for the sector (7", 7#)150

(see the Supplemental Materials for a detailed consideration of the case U = 6 where it151

occurs at t
0/t ⇡ �0.12). The binding of the two holes becomes extremely strong around152

4

point becomes U/t = 5.56 in contrast with the case of an isolated plaquette [17]. This119

is in a very good agreement with the value of the Coulomb interaction U/t = 5.6 that120

was found in the diagrammatic Monte Carlo calculations [28] in a search of pseudo-121

gap formation, and the value of U/t ⇡ 6 pointed out in the recent review [8] as the122

most reasonable value of the e↵ective Hubbard interaction for cuprates. Note also that123

periodic boundary conditions e↵ectively double t
0 compared to t, which explains the124

chosen value of the NNN hopping twice smaller than in Ref. [17]. At a special value125

of the chemical potential [17] µ ⇡ 0.48 the ground state for the half-filled N = 4 anti-126

ferromagnetic singlet is degenerate with the singlet for N = 2 electrons and with two127
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divergences in the perturbation series. For the Kondo problem, the dual perturbation131

starting from the atomic limit [29] has a divergent local four-point vertex at low tem-132
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nism, i.e., an attractive interaction between pairs of fermions. Although a phase tran-
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FIG. 28. Schematic view of pseudogap formation in (4 ⇥ 4) periodic cluster from the peak DOS structure of individual 2 ⇥ 2 plaquettes (left),
and the sketch of e�cient t0 hopping in presence of two holes in AFM structures (right)

sites being numbered from 1 to 16 from left to right and then from top to bottom, in agreement with the understanding that large
NNN hopping completely destroys the antiferromagnetic order.

Another interesting observation arises when we calculate the sum
P

i j C2
i j for di↵erent values of t0. This value shows how well

the | 14;0i state is described in terms of the two holes states | 14;i ji. It turns out that while for t0 = 0 this value is reasonably large
(1.25, one should be surprised it is larger than one as the states  14;i j are no orthogonal), for t0 = 0.3 it is very low (0.0013). This
indicates that the second approach to the notion of hole, in terms of the Fermi liquid theory is hardly appropriate for large t0, in
other words the holes in that regime are very incoherent.

Appendix H: Lehmann representation for one-particle and two-particle Green’s functions

The one-particle Green’s function for a finite fermionic system with time-independent Hamiltonian and many body spectrum
Ĥ|ii = Ei|ii has the following Lehmann representation in the Matsubara space:

g�12(⌫) =
1
Z

X

i j

hi|ĉ1�| jih j|ĉ+2�|ii
i⌫ + Ei � E j

(e��Ei + e��E j )

where Z =
P

i e��Ei .
For the two-particle Green’s function (2PGF) we introduce first four ”auxilary” fermionic frequencies (!1 ÷ !4 ) and define

2PGF in Matsubara space as following46:

��
0

1234(!1!2!3) =
1
�2

Z �

0
d⌧1

Z �

0
d⌧2

Z �

0
d⌧3 ei(!1⌧1+!⌧2+!3⌧3)

hT⌧c1�(⌧1)c2�0 (⌧2)c†4�0 (⌧3)c†3�(0)i . (H1)

Here time translation invariance of the imaginary time 2PGF has been used. Note that here the frequencies in the exponential
corresponding to annihilation and creation operators have the same sign in contrast to the usual definition for the Fourier trans-
form. Correspondingly, energy conservation requires !1 + !2 + !3 + !4 = 0. By restricting the range of integration such that
time ordering is explicit, one obtains 3! di↵erent terms. These can be brought into the same form by permuting the operators and
corresponding frequencies. By the anticommutation relations, each term picks up the sign of the permutation. After introducing
the sum over eigenstates, the 2PGF can be written as

��
0

1234(!1!2!3) =
1
Z

X

i jkl

X

⇧

�(Ei, E j, Ek, El,!⇧1 ,!⇧2 ,!⇧4 ) sgn(⇧)hi|O⇧1 | ji h j|O⇧2 |ki hk|O⇧4 |li hl|c
†

3�|ii (H2)

where the first sum is over the eigenstates and the second over all permutations⇧ of the indices {123}. We further have defined
O1 = c1�, O2 = c2�0 and O4 = c†4�0 and e.g. ⇧1 denotes the permutation of the first index. Here the di↵erent choice of convention

δ ≈ 0.24. In analogy with the Kondo model22, where the
degeneracy of the two spin states of a magnetic impurity plays
a crucial role in the anomalous low-energy properties with a
correspondingly divergent perturbation series, the degeneracy of
the plaquette starting point gives rise to strong fluctuations in
plaquette-based methods, which can reveal the nature of the
anomalous behaviour of the interacting Hubbard model on a two-
dimensional lattice. In this manuscript, we discuss how several
important aspects of the cuprate phenomenology can be seen to
appear when spatial correlations are added to the plaquette. For
this purpose, we use two complementary approaches. First, exact
diagonalization of a 4 × 4 cluster, i.e., four coupled plaquettes,
provides a way to add further short-ranged correlations to the
plaquette starting point. It shows a large hole pair-binding energy
at suitable values of t0 and U. Secondly, the dual fermion23

approach provides a recipe to start from an arbitrary local
reference system24, in this case, the 2 × 2 degenerate plaquette,
and to incorporate nonlocal corrections in a systematic fashion.
Dual fermion perturbation theory25,26 and the dual Bethe-Salpeter
equation make it possible to study the momentum structure
emerging from longer-ranged fluctuations. Here, it is important to
state that the plaquette degenerate point leaves a clear low-
temperature signature in the two-particle correlation function,
which is the basic building block of the dual fermion perturbation
theory. Thus, large nonlocal corrections are expected to appear as
the temperature is lowered.
The first attempt to discuss the plaquette physics as the main

ingredient of the high-Tc theory was done with the cluster
dynamical mean-field theory (DMFT) scheme16, and later Altman
and Auerbach analytically explained the importance of plaquette
two-hole states with dx2!y2 symmetry27. Nevertheless, they did not
consider the possibility of a degenerate ground state of the
plaquette17, with N= 2, 3, 4 electrons per plaquette, at suitable
values of t0, μ. and U.
We should point out that there is a curve of degenerate

plaquettes in the t0, μ, U space. Here, we fix t0=t ¼ !0:15, the μ
and U that correspond to a six-fold degenerate ground state of the
plaquette are signified by the star in the Fig. 1. Since we use here
periodic boundary conditions the critical Coulomb interaction for
plaquette degenerate point becomes U/t= 5.56 in contrast with
the case of an isolated plaquette17. This is in a very good
agreement with the value of the Coulomb interaction U/t= 5.6
that was found in the diagrammatic Monte Carlo calculations28 in
a search of pseudogap formation, and the value of U/t ≈ 6 pointed
out in the recent review8 as the most reasonable value of the
effective Hubbard interaction for cuprates. Note also that periodic

boundary conditions effectively double t0 compared to t, which
explains the chosen value of the NNN hopping twice smaller than
in ref. 17. At a special value of the chemical potential17μ ≈ 0.48 the
ground state for the half-filled N= 4 antiferromagnetic singlet is
degenerate with the singlet for N= 2 electrons and with two
doublets from N= 3 sector. For these values of the parameters the
plaquette state corresponds to the hole doping of δc= 0.25.
In the dual perturbation theory, starting from a degenerate

plaquette point leads to divergences in the perturbation series.
For the Kondo problem, the dual perturbation starting from the
atomic limit29 has a divergent local four-point vertex at low
temperarure, while the Green’s function is finite. In the case of the
degenerate plaquette both the single-particle and two-particle
Green’s functions of the reference system are divergent.
We will also consider reference systems differing from the

degenerate point in the value of the chemical potential. For
smaller μ ≈ 0 (marked with the circle in Fig. 1) the lattice would
tend to a metallic behaviour, for larger μ ≈ 0.8 (marked with the
square) the perturbation for the lattice results in a super-
conducting dx2!y2 instability.

RESULTS
Short-ranged correlations: 4 × 4 cluster
To understand why superconductivity occurs, it is necessary to
find a pairing mechanism, i.e., an attractive interaction between
pairs of fermions. Although a phase transition can only occur in
the thermodynamic limit, finite-size simulations can already point
towards the energetic mechanism. We calculated the pairing
energy of two holes on the 4 × 4 periodic cluster–which consists of
four 2 × 2 plaquettes–through the exact diagonalization (ED) of
ground state energies in the different occupation sectors27,30,

Δ2h ¼ ~E2h ! 2~E1h; (1)

where the energies are measured relative to the half-filled ground
state E0 with no holes, ~ENh ¼ ENh ! E0. Note, that Δ2h < 0 signals
pairing. By construction, Δ2h= 0 for U= 0 and U≫ t, so it
measures genuine correlation effects. Calculated energies for t0 ¼
0 are in perfect agreement with the standard ED results30.
Figure 2 shows the pair binding energy Δ2h between two holes

for a 4 × 4 cluster t ! t0 ! U Hubbard model with periodic
boundary conditions as a function of interactions strength U for
different next-nearest neighbours hopping t0. A striking observa-
tion is that switching on non-zero negative t0=t leads to a distinct
minimum in the Δ2h dependence on U. It can be attributed to the
change of the ground state for the sector (7↑, 7↓) (see the
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Fig. 1 Plaquette ground state. Phase diagram of 2 × 2 plaquette for
different particle sectors (N= 2, 3, 4) and zero temperature with the
degenerate point marked by star. The circle and and square display
the shifted chemical potentials for a test comparison. The region of
dx2!y2 superconducting phase and normal metal for square lattice
are also marked.

Fig. 2 Hole pairing energy. Pairing energy Δ2h of two holes in a 4 × 4
cluster with periodic boundary condition as a function of U and t0.
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superconductors. More specifically, our results, and the hole
binding found in multiorbital ladders33, show that magnetic
fluctuations induce pairing in repulsive Hubbard models. In this
framework, these efforts are as important as the theoretical
studies of Cu ladders in the 1990s13,15: if pairing occurs convin-
cingly in 1D systems, the same Hamiltonian may induce analogous
tendencies in higher dimensions where many-body techniques
are not as accurate.

RESULTS
Model
We use a canonical two-orbital Hubbard model with kinetic
energy and interaction terms written as H= HK+ HI+ HD. The
tight-binding portion is

HK ¼
X

iσγγ0
tγγ

0
cyiγσciþ1γ0σ þ h:c:

! "
; (1)

where cyiγs (ciγσ) creates (destroys) an electron at site i of a chain,
orbital γ (a and b in our case, although our Hamiltonian notation is
generic for arbitrary number of orbitals), and spin projection σ.
The nearest-neighbor (NN) electron hopping is here a 2 × 2
orbital–space unit matrix, that is, t γγ′= t δγγ′, with t the energy
unit throughout the publication. The non-interacting bandwidth is
W= 4.0t. The hopping symmetry between the two orbitals, and
the absence of crystal-field splitting, prevents the appearance of
the orbital-selective Mott physics recently studied in related
multiorbital models52–54.
The electronic interaction is standard for multiorbital fermionic

systems55:

HI ¼ U
X

iγ

niγ"niγ# þ U0 # JH
2

# $X

iγ<γ0
niγniγ0 # 2JH

X

iγ<γ0
SiγSiγ0 þ JH

X

iγ<γ0
PyiγPiγ0 þ h:c:

! "
:

(2)

The first term is the intra-orbital Hubbard repulsion U. The second
contains the inter-orbital repulsion at different orbitals, with the
usual relation U′= U – 2JH due to rotational invariance. The third
term involves the Hund’s coupling JH, and the last term represents
the on-site inter-orbital electron–pair hopping ðPiγ0 ¼ ciγ0"ciγ0#Þ.

Later it will also be important to incorporate an easy-plane
anisotropy component (D > 0):

HD ¼ D
X

i

ðSzia þ SzibÞ
2: (3)

The spin-1/2 operators (Sx, Sy, Sz) are defined as Sαiγ ¼
1
2

% &P
σσ0 c

y
iγσσ

α
σ;σ0ciγσ0 via Pauli matrices. For our results, we used

the Lanczos method as well as DMRG, with up to m= 1800 states
and truncation errors below 10−6 as in previous investigations45.

Undoped two-orbital Hubbard model at intermediate U/W vs.
Haldane state
We focus on multiorbital models in iron-based superconductors
where ladders and chains can be synthesized, but our results are
valid for other transition metal compounds. Iron superconductors
are “intermediate” between weak and strong coupling, and U/W ≈
1 is considered realistic4–6. Because the iron family is not at U/W »
1, a pure spin model is not appropriate and interacting itinerant
fermions must be used.
Consider first whether the model discussed here—with mobile

electrons, intermediate U/W, and hopping unit matrix—is
smoothly connected to the Haldane limit. At one particle per
orbital and U/W » 1—with concomitant growth of JH fixed at the
often used ratio JH/U= 1/45,56—our model certainly develops S=
1 states at every site, antiferromagnetically Heisenberg coupled.
To analyze if intermediate U/W ≈ 1 and strong coupling U/W » 1
(with S= 1 spins on-site) are qualitatively similar, we compute
with DMRG the entanglement spectra (ES)57. For example, at
U/W= 1.6 where hole binding is maximized (see below), Fig. 2a, b
indicates that increasing JH/U the Hubbard ES clearly resembles
the S= 1 chain ES58.
However, our model is not merely a S= 1 chain: the inset of Fig.

2c indicates that the von Neumann entropy59–61 SVN converges to
ln(2) (S= 1 chain result) only at U/W ≈ 5 and beyond. At typical
couplings of iron compounds, SVN is approximately double the U/
W » 1 limit. Thus, the two-orbital Hubbard model qualitatively
resembles the Haldane chain, but at U/W ≈ 1 there are quantitative
differences likely caused by non-negligible charge fluctuations.
Consider now the evolution increasing D/t. Recent work found a

transition between the gapped Haldane region and a gapped
state with trivial topology46. In Fig. 2c indeed SVN at fixed U/W=
1.6 and JH/U= 0.25 does not evolve smoothly from D/t= 0—
connected to the large U/W Haldane limit—to the anisotropic
large D/t “XY” limit. The ground state in this limit has a spin triplet
with zero z-projection at every site, and no edge states. At 0.1 < D/
t < 0.2, an abrupt change occurs and eventually SVN→ ln(1) as D/t
grows, compatible with a product state of zero z-projection triplets
[see discussion below, Eq. (4)].
In summary, although with quantitative differences, the

undoped Hubbard model qualitatively resembles the Haldane
chain as long as D/t does not cross a threshold beyond which
edge states disappear and a topologically trivial regime develops.

Pairing in the doped two-orbital Hubbard model
Our main focus is why pairing occurs and why in the channel it
occurs. However, before addressing these issues, let us review and
extend recent studies about hole–pair formation and pair–pair
correlations in the doped two-orbital Hubbard model. This analysis
will provide hints for the intuitive explanation. In Fig. 3a the two-
hole binding energy vs. U/W is shown, parametric with JH/U. This
binding energy is defined as ΔE= E(2)− E(0)− 2[E(1)− E(0)], with
E(M) the ground-state energy with M holes (zero holes refers to
the half-filled state with one electron per orbital). When ΔE
becomes negative, it signals a two-hole bound state. Clearly,
Fig. 3a indicates pair formation with maximum |ΔE| at 1<U/W<2, as
in ref. 45, and growing with increasing JH/U (note JH/U should

Fig. 1 Summary main results. a Sketch of a chain with two active
orbitals a and b. b Representation of a splitting the orbitals into legs
forming a fictitious two-leg ladder, with legs only connected by the
Hund coupling JH. c One component of the variational state
proposed in the text. Arrows indicate spin-1/2 singlets linking
nearest-neighbor sites. Although their spin is zero, they are oriented
objects because singlets are antisymmetric under the exchange of
spins. The full ORVB state is an optimized linear combination of all
possible arrangements of these singlets, that is, a linear combination
of AKLT valence-bond solids. d Doped state: holes “h” are effectively
paired when a spin singlet is removed.
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Fig. 1. Anisotropic gap A(k) in
electron volts as a function of ka
and kya at T= 0, with X = 0.31 (A0
= 0.003 eV), Tj = 0.03 eV =
1 0A0, and F = -4t' = -0.45 eV,
corresponding to an electron
Fermi surface closed around F.
For clarity of visualization we have
omitted the factor 0[wD - 18(k)!],
which multiplies the gap.

k

= ±kkyF TJ(kF) = 0, and the gap attains its
smallest value A0. (v) For a Fermi surface
closed around the point r (eF < -4t'), the
maxima of the gap are in the directions
(1,0) and (0,1). The maximum value of the
gap is obtained when the Fermi surface
includes the points (Tr/a, 0), (0, rr/a) and is
T1/2 + A0. For larger electron fillings, when
the Fermi surface is not closed around the
point F and does not include the maxima in
T,(k), a more complicated structure devel-
ops, with the maxima in off-symmetry di-
rections.
We now focus on an electron Fermi

surface closed around the point which
corresponds to recent experiments on
Bi2212 (2). Along the directions (0, 1) or

(1, 0), the gap on the Fermi surface is given
by

'A(kF) = IA° + 32 (1 4 _z (7)j32 4t' 2t)

Thus, it is not difficult to obtain anisotro-
pies similar to those seen in experiments.

7-
6- (1)|1| (2)

6

0 i 6 8

W(A0
Fig. 2. Density of states N,(w)/Nn(w) at T = 0 for
£F = -4t' = -0.45 eV, for two sets of param-
eters: (1) TJ = 0.012 eV, X = 0.29 (A0 = 0.003
eV); (2) TJ = 0.03 eV, X = 0.25 (A0 = 0.003 eV).
The numerical evaluation of the density of
states was carried out by replacing the 8 func-
tion by a Lorentzian of width 10-4 eV.

Clearly, the gap anisotropy on the Fermi
surface is sensitively dependent on doping.
From numerical solutions we have explored
the structure of the gap for a range of
parameters; a typical example is shown in
Fig. 1. Because it is not possible to detect
the sign of the gap in angle-resolved pho-
toemission spectroscopy, it is necessary to
explore the structure of the gap in more

detail and precision, if it is to be distin-
guished from a d-wave gap.
We next turn to a brief discussion of the

superconducting density of states, N,(w) =

2 zk b(w - Ek), obtained from the
quasiparticle spectrum Ek at T = 0. We
have calculated Nj(.) for a variety of pa-
rameters; an example is shown in Fig. 2.
The low-energy features are as follows. At
the lower gap edge, A0, Ns(Q) has a step
discontinuity if TJ 0, which can be
proven analytically. There are also logarith-
mic singularities (proven analytically) at
higher energies (see Fig. 2) similar to the
logarithmic singularities in the d-wave den-
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Fig. 3. Critical temperature Tc as a function of
TJ; wD = 0.02 eV: (A)FF = -4t' = -0.45 eV, Nn
= 2.5/eV-spin, X = 0.625; (0) 8F = -4t' =

-0.45 eV, Nn = 2.5/eV-spin, X = 0.0625; (O) 8F

= -2.67t' = -0.3 eV, Nn = 0.8/eV-spin, X =

0.2.
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sity of states. Clearly, these integrable sin-
gularities smoothed further by the observed
inelasticity (14) cannot give rise to the
Hebel-Slichter peak in the nuclear magnet-
ic relaxation rates. The absence of the
Hebel-Slichter peak is an important distin-
guishing feature of the high-temperature
superconductors.

The critical temperature Tc can be de-
termined from Eq. 3. Note that one can
obtain a lower bound on TC by neglecting
the phonon enhancement term in the gap
equation. We find TC 2 [Tj(k)/4]max.
When the Fermi surface is closed around F
(that is, eF < -4t'), this leads to

jTJ 2t +F,F )4 (8T =_(1-4 ) (8)

However, when the Fermi surface is open
around F (that is, 8F 2 -4t'), we find

Tc 64 14t +2t) 9
Remarkably, the lower bound, Tc = Tj/4,
when eF = -4t', is identical to the isotro-
pic estimate when TJ > > V. The numerical
evaluation of TC is shown in Fig. 3 for
typical sets of parameters.

It is clear from above that TC is highest
(not only the lower bound) when 6F = -4t'
but falls away from this doping. A high
value of Tc is obtained when the maxima of
T1(k) are included within the shell 2WD of
the Fermi surface, and has nothing to do
with the existence of van Hove singularities
in the density of states. Note that the lower
bound does not even involve the density of
states at the Fermi surface. For lower TC
materials, TJ plays a less important role and
Tc begins to be increasingly controlled by
the phonon coupling, thereby reaching the
standard BCS value. Therefore, for materi-
als with highest Tc's, TJ dominates and the
isotope effect is expected to be small. Con-
versely, materials with low T 's should ex-
hibit a normal isotope effect. This is in
agreement with our earlier isotropic esti-
mate which showed that when TJ dominat-
ed, even the phonon contribution, linearly
proportional to X, is independent of isoto-
pic substitution. On the other hand, when
TJ was small, we had the BCS result corre-
sponding to normal isotope effect. It is now
evident that the dispersion of t1 (k) is es-
sential in producing this crossover in the
isotope effect.

From the gap equation, it is possible to
prove that as long as A0 . 0, all the Fourier
modes of A(k) vanish at the same temper-
ature Tc. It is also important to note that a
value of T1 = 400K used to obtain a Tc of
the order of 100 K is an underestimate from
what we know about t ; T, could be as large
as 1000 K. Of course, fluctuation effects,
not included in our mean field theory, will
reduce Tc.
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FIG. 7. Static spin-spin correlation function hM0 Mii obtained by exact diagonalization for the ground state of the sector (7", 7#) of the
4⇥4 cluster for di↵erent t’. Whereas t0 = 0 features clear antiferromagnetic correlations, at t0/t = �0.3 these are replaced by stripe-like
ferromagnetic correlations. The top-left corner corresponds to i = (0, 0).

These results clearly show the importance of t0, which greatly increases the pairing energy gain. At the same time, in a
non-interacting systems �2h = 0 by definition, so a finite value of U is also necessary for the pairing. We find that the optimal
U increases with t0. A second observation is the order of magnitude of the pairing, �2h ⇡ 0.7t � kBT exp

c . This tells us that
bound pairs exist for temperatures far above the superconducting region. The superconducting transition should then be seen as
the condensation of these pairs. Thus, the binding energy of two holes turns out to be much higher than the superconducting
critical temperature which means that the pairs (“bipolarons”) should be well-defined also in non-superconducting phase, a
situation dramatically di↵erent form the conventional BCS superconductivity. The di↵erence is like the di↵erence between
purely itinerant weak ferromagnets and ferromagnets with local magnetic moments which exist until very high temperatures and
only order, rather than appear, at the Curie temperature65.

We analyzed the spin-spin correlation function in the sector (7", 7#) with di↵erent NNN hoppings t0 (Fig.7) and clearly see
a sharp change from antiferromagnertic correlations for t0 = 0 with clear ”checkerboard” structure to almost nonmagnetic case
or ferromagnetic stripes in the x or y directions for t0 = 0.3. A similar reduction of AFM-correlations and existence of FM-one
with t0 was found in a lattice QMC study66.
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is exact but limited by the cluster size. From the comparison of the two curves, we conclude that the dual fermion theory shows
a tendency towards pseudogap formation which is clearly seen in the ED results. It is natural to conclude that the pseudogap
in the 4 ⇥ 4 cluster is related to the coherent interactions of the large peak on the DOS in the reference plaquette or Fano-like
e↵ect of interactions with the “soft fermion mode” of the low-lying excitations which are encoded in the local vertex functions
of the DF-approach. In this sense the pseudogap physics is not related to the magnetic fluctuations, and is more in line with the
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The physics of cuprate superconductors with the clear existence of a quantum critical point at �c ⇡ 0.24 is closely related to
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diagonalization of the 4⇥4 cluster supports strong pair-binding related with the next-nearest hoppings t0. Given their large bind-
ing energy, these pairs should probably exist also at much higher temperatures than the superconducting critical temperature,
remaining noncoherent. The formation of the pseudogap is related to a Fano-like e↵ect originating from the sharply peaked
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H = −t
sl
∑

⟨ij⟩,s

(

c†iscjs +H.c
)

+ U
∑

i

ni↑ni↓, (1)

where c†is, nis are electron creation and number operators
at site i on the square lattice. We will occasionally refer
to its Gutzwiller projected version, the t-J model:

HtJ = −tP
∑

⟨ij⟩,s

(

c†iscjs +H.c
)

P + J
∑

⟨ij⟩

Si · Sj + J ′.

(2)

P is the projector of doubly occupied states, and J →
4t2/U at large U/t. J ′ is the term of order J that in-
cludes next nearest neighbor hole hopping19. For one
electron per site (half filling), the short range antiferro-
magnetic correlations are apparent when diagonalizing
(1) and (2) on two sites. The dimer states were used
to construct effective models on the ladder20,21 and for
spin-Peierls phases on the square lattice22. The projected
SO(5) model was defined on a ladder using empty dimer
states as the hole pair bosons6. However, there is no hole
pair binding for the Hubbard model on a dimer. Naively,
this suggests that pairs could readily disintegrate into sin-
gle holes once inter-dimer hopping is turned on. More-
over, if one wishes to capture d-wave symmetry in the
hole pair wavefunction, the basic unit block must pos-
sess at least four-fold rotational symmetry.
The smallest such block that can cover the square lattice
is the four site plaquette. It is a trivial task to diago-
nalize the Hubbard model on a plaquette and obtain its
spectrum and wavefunctions.
The spectrum is depicted in Fig. 2.
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FIG. 2. Lowest spectrum of the Hubbard model on

a plaquette. Eigenstates are labelled by total spin S and
plaquette momentum Qx, Qy = 0,π. The shaded area is over
all high energy truncated states. The vacuum is defined as
|Ω ⟩ , and the second quantized operators connect the vacuum
to the lowest eigenstates as shown.

Since it is cumbersome to write the full wavefunctions ex-
plicitly, we represent their dominant correlations as fol-

lows (i) Real space (RS) description using holes, dimer
singlets and dimer triplets as depicted in Fig. 3. (ii)
Plaquette momenta (PM) representations using Q =
(Qx, Qy), Qα = 0,π, the four points on the plaquette
Brillouin zone. The plaquette electron operator of pla-
quette i is given by

c†Qis =
1

2

∑

η=0,x̂,ŷ,x̂+ŷ

eiQ·ηc†i+ηs. (3)

It is instructive to examine the plaquette eigenstates and
energies in some detail before proceeding to couple them.

A. The vacuum

The ground state of the 4-site Hubbard model at half
filling (ne = 4) is called |Ω ⟩ . In the PM representation
it can be described by (suppressing the plaquette index),

|Ω ⟩ =
P√
ZΩ

(c†(π,0)↑c
†
(π,0)↓ − c†(0,π)↑c

†
(0,π)↓)c

†
(0,0)↑c

†
(0,0)↓|0⟩.

(4)

Z is the wavefunction normalization factor. |Ω ⟩ is a d-
wave BCS state, where doubly occupied states are sup-
pressed by a partial Gutzwiller projection P(U/t). (At
large U , P becomes a full projection).
In the RS representation, see Fig.3, |Ω ⟩ is depicted as
the resonating valence bonds (RVB) ground state of the
Heisenberg model plus small contributions from doubly
occupied sites. In the two dimer basis, |Ω ⟩ contains a
large contribution from a triplet pair.
The product state |Ω ⟩ =

∏plaq
i |Ω ⟩ i, is our vacuum

state for the full lattice, upon which Fock states can be
constructed using second quantized boson and fermion
creation operators.
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FIG. 3. Real space representation of plaquette

bosons. Dominant spin and charge correlations in the pla-
quette bosons wavefunctions. Bold lines represent singlet
dimers ↑i↓j − ↓i↓j , and double lines represent the triplet
↑i↓j + ↓i↑j , ↑i↑j ± ↓i↓j , where i and j are on sublattices A
and B respectively. Holes are depicted by open circles.
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B. Magnon triplet

The magnons are defined by the lowest triplet of S = 1
states. In PM representation they are

t†α |Ω ⟩ =
P√
Zt

∑

Qs

c†Qsσ
α
ss′cQ+(π,π)s′ |Ω ⟩ , α = x, y, z,

(5)

where σα are Pauli matrices. These (antiferro-)magnons
have plaquette momentum Q = (π,π). Their excitation
energy is close to the superexchange energy J ≈ 4t2/U .
An antiferromagnetic state can be constructed by a prod-
uct of plaquette coherent states

Ψafm =
plaq
∏

i

(cos θ + sin θmα t†iα) |Ω ⟩ , (6)

where |m| = 1. This state supports a finite staggered
moment

1

N
⟨Sα

(π,π)⟩θ,mα =
√

3/8mα cos θ sin θ

≤ 0.306. (7)

Note that the maximal magnetization per site supported
by Ψafm is less than the classical value of 0.5, since it
does not contain higher spin states up to S = 2.

C. Single hole fermions

The ground states for a single hole (ne = 3) are two
degenerate doublets described by plaquette momenta
Q = (0,π), (π, 0):

f †
Qs |Ω ⟩ =

P
√

ZQ

cQs + . . . |Ω ⟩ , s =↑, ↓, (8)

where . . . represent higher order electron operators. The
hole fermion Bloch state can be constructed as

f †
k+Qs |Ω ⟩ =

plaq
∑

i

eik·xif †
Qis |Ω ⟩ . (9)

For a lattice of disconnected plaquettes, f †
(π,0), creates an

eigenstate with a photoemmission spectral weight given
by

|⟨Ω|f(π,0)sc(π,0)s |Ω ⟩ |2 = Z(π,0), (10)

where e.g. for the t-J model, 1/4 < Z(π,0) < 1/2 is a
function of t/J . This weight is further renormalized by
interplaquette couplings in the effective Hamiltonian.
Incidentally, there is another degenerate pair of dou-
blets at higher energy (of order J) at momenta Q =
(0, 0), (π,π). It turns out that by symmetry, the (π,π)

state has vanishing hole spectral weight, that is to say
for all values of U/t

Z(π,π) = |⟨Ω|f(π,π)sc(π,π)s |Ω ⟩ |2 = 0. (11)

Since these states couple by interplaquette hopping to
the lower doublet, this produces an asymmetry of the
quasiparticle weight between momenta close to (0, 0) and
(π,π). This asymmetry may explain the difficulty in ob-
serving “shadow bands”, i.e. quasiparticles on the Fermi
pockets surfaces closer to (π,π)23.
It is interesting to note that the two-fold degeneracy of
the fermion doublets is a property of the plaquette. The
four site Hubbard and t-J Hamiltonians happen to com-
mute with the plaquette d-density wave operator24

D̂ = iP
∑

s

(c†(π,0)sc(0,π)s − c†(0,π)sc(π,0)s)P . (12)

D̂ connects between the doublet pairs (π, 0) ↔ (0,π),
and (0, 0) ↔ (π,π). Thus a possible ground state of one
hole is the current carrying state

Ψs =
plaq
∏

i

(f †
(π,0),is + if †

(0,π),is |Ω ⟩ , (13)

which is a staggered flux (or d-density wave) state. For
a single hole in 4× 4 periodic lattices, this state does not
seem to be the lowest energy(see Section IVD). However,
a large susceptibility for such currents is expected since
the hole dispersion has a valley between the antinodal
points (π, 0) and (0,π), which is weakly dispersive and
contains a large admixture of the two plaquette fermion
states. It is thus conceivable that the staggered flux com-
bination of the plaquette fermions would be selected in a
vortex core or near the sample edge.

D. Hole pair boson

The ground state of two holes (ne = 2) is described by

b†α |Ω ⟩ =
1√
Zb

Pc†(0,0)↑c
†
(0,0)↓|0⟩

=
1

√

Z ′
b

⎛

⎝

∑

ij

dijci↑cj↓ + . . .

⎞

⎠ |Ω ⟩ , (14)

where dij is +1 (-1) on vertical (horizontal) bonds, and
. . . are higher order U/t-dependent operators. Thus, b†

creates a pair with internal d-wave symmetry with re-
spect to the vacuum. For the relevant range of U/t, the
state normalization is 1/3 < Z ′

b < 2/3. The important
energy to note is the pair binding energy defined as

∆b ≡ E(0) + E(2)− 2E(1) (15)

where E(Nh) is the ground state of Nh holes. ∆b is
depicted in Figure 4. In the range U/t ∈ (0, 5), it is
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where . . . represent higher order electron operators. The
hole fermion Bloch state can be constructed as

f †
k+Qs |Ω ⟩ =

plaq
∑

i

eik·xif †
Qis |Ω ⟩ . (9)

For a lattice of disconnected plaquettes, f †
(π,0), creates an

eigenstate with a photoemmission spectral weight given
by

|⟨Ω|f(π,0)sc(π,0)s |Ω ⟩ |2 = Z(π,0), (10)

where e.g. for the t-J model, 1/4 < Z(π,0) < 1/2 is a
function of t/J . This weight is further renormalized by
interplaquette couplings in the effective Hamiltonian.
Incidentally, there is another degenerate pair of dou-
blets at higher energy (of order J) at momenta Q =
(0, 0), (π,π). It turns out that by symmetry, the (π,π)

state has vanishing hole spectral weight, that is to say
for all values of U/t

Z(π,π) = |⟨Ω|f(π,π)sc(π,π)s |Ω ⟩ |2 = 0. (11)

Since these states couple by interplaquette hopping to
the lower doublet, this produces an asymmetry of the
quasiparticle weight between momenta close to (0, 0) and
(π,π). This asymmetry may explain the difficulty in ob-
serving “shadow bands”, i.e. quasiparticles on the Fermi
pockets surfaces closer to (π,π)23.
It is interesting to note that the two-fold degeneracy of
the fermion doublets is a property of the plaquette. The
four site Hubbard and t-J Hamiltonians happen to com-
mute with the plaquette d-density wave operator24

D̂ = iP
∑

s

(c†(π,0)sc(0,π)s − c†(0,π)sc(π,0)s)P . (12)

D̂ connects between the doublet pairs (π, 0) ↔ (0,π),
and (0, 0) ↔ (π,π). Thus a possible ground state of one
hole is the current carrying state

Ψs =
plaq
∏

i

(f †
(π,0),is + if †

(0,π),is |Ω ⟩ , (13)

which is a staggered flux (or d-density wave) state. For
a single hole in 4× 4 periodic lattices, this state does not
seem to be the lowest energy(see Section IVD). However,
a large susceptibility for such currents is expected since
the hole dispersion has a valley between the antinodal
points (π, 0) and (0,π), which is weakly dispersive and
contains a large admixture of the two plaquette fermion
states. It is thus conceivable that the staggered flux com-
bination of the plaquette fermions would be selected in a
vortex core or near the sample edge.

D. Hole pair boson

The ground state of two holes (ne = 2) is described by

b†α |Ω ⟩ =
1√
Zb

Pc†(0,0)↑c
†
(0,0)↓|0⟩

=
1

√

Z ′
b

⎛

⎝

∑

ij

dijci↑cj↓ + . . .

⎞

⎠ |Ω ⟩ , (14)

where dij is +1 (-1) on vertical (horizontal) bonds, and
. . . are higher order U/t-dependent operators. Thus, b†

creates a pair with internal d-wave symmetry with re-
spect to the vacuum. For the relevant range of U/t, the
state normalization is 1/3 < Z ′

b < 2/3. The important
energy to note is the pair binding energy defined as

∆b ≡ E(0) + E(2)− 2E(1) (15)

where E(Nh) is the ground state of Nh holes. ∆b is
depicted in Figure 4. In the range U/t ∈ (0, 5), it is

4
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Super QMC for doped Hubbard lattice

Alexander Lichtenstein⇤

Institute of Theoretical Physics, University of Hamburg

(Dated: August 9, 2022)

We discuss a combination of DF-superperturbation with DQMC in K-space

PACS numbers: 71.27.+a,

I. METHOD

The simplest model describing interacting fermions on a lattice is the single band Hubbard model[? ], defined by
the Hamiltonian

Ĥ =
X

i,j,�

tijc
†
i�cj� +

1

2

X

i,�,�0

Uc
†
i�c

†
i�0ci�0ci� (1)

where tij is the hopping integrals including µ is the chemical potential:

tij =

8
>>><

>>>:

t if i and j are nearest neighbours,

t
0 if i and j are next nearest neighbours,

✏ = �µ if i = j,

0 otherwise

(2)

U is the on-site Coulomb repulsion , and i runs over the sites of a d-dimensional lattice. The operators c†i� and ci�

respectively create and annihilate a fermion with spin � on the (single) orbital centred at i, while ni� ⌘ c
†
i�ci�.

The reference system - perfect for DQMC no sign problem

Ĥ0 =
X

i,j,�

t
0
ijc

†
i�cj� +

1

2

X

i,�,�0

Uc
†
i�c

†
i�0ci�0ci� (3)

t
0
ij =

8
>>><

>>>:

t if i and j are nearest neighbours,

t
0 = 0 if i and j are next nearest neighbours,

✏ = �µ0 = �U/2 if i = j,

0 otherwise

(4)

Perturbation:

t̃ij = tij � t
0
ij (5)

It is much more general to formulate DF-perturbation in the Action-formalism. In this case our N ⇥N lattice and
corresponding refverence systems represent N ⇥N -part wich we cut from infinite lattice and periodise the bare Green
function G and G0 for reference system.

General Lattice Action Dual Action

S[c⇤, c] = �
X

1,2

c
⇤
1 G�1

12 c2 +
1

4

X

1234

U1234c
⇤
1c

⇤
2c4c3, (6)

Perturbation matrix of one-electron part of Action:

t̃ = G�1
0 � G�1 (7)

⇤Electronic address: alichten@physnet.uni-hamburg.de
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Supplementary Figure 7. Many body low-energy states of (4 ⇥ 4) periodic cluster for the sector (7",7#) as a function of t0 for U/t = 6. The
degeneracy of few low-lying states are marked with the numbers. The green arrow indicate the critical t0 for ground state crossing.
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Supplementary Figure 8. Energy of two-hole binding for 4⇥4 periodic cluster for positive, negative and zero values of t0/t as function of U
(left) as well as for extended negatice values of t0/t (right).

like for small t0 to basically nonmagnetic for larger t0. Supplementary Figure 11 shows the density of states for di↵erent sectors
(hole concentrations) for ED calculations of (4 ⇥ 4) periodic cluster with t0/t = �0.15 and t0/t = �0.3. We can conclude that for
t0/t = �0.3 and optimal U = 5.56 all calculated sectors corresponding to doping � = 0.0525 ÷ 0.25 have large pseudogap DOS.
Simple pictorial view on such pseudogap formation is presented in Supplementary Figure 12. If we consider a (4 ⇥ 4) cluster
built from four interacting (2 ⇥ 2) plaquettes each of them having a sharp peak at the Fermi level, then it is clear that through the
resonant interactions the total DOS would have a pseudogap at EF . This is similar to the Fano e↵ect for Kondo-like impurity in
the conducting bath.

We should point out that the optimal interaction U/t ⇡ 6 is smaller than the bandwidth W/t = 8 and substantially below the
strong coupling, e↵ective t � J model limit. Therefore, the huge hole-hole binding we found in the 4⇥4 cluster at intermediate
U/t ⇡ 6, with two holes located on di↵erent “diagonal” plaquettes, is very di↵erent from the so-called “string-like” e↵ective
hole-hole interactions in the t � J model, where two holes are sitting with nearest-neighbor or next-nearest-neighbor distance19,
i.e., in the same plaquette. We would like to point out that the strong pair-hole binding energy on 4x4 Hubbard cluster exists only
for negative values of t0/t, while for positive ones the binding energy is very small (Supplementary Figure 8). In Supplementary
Figure 9 we additionally show the pair-hole binding energy for the ED calculations of a (2 ⇥ 2) periodic plaquette with t0/t = �0.3
as a function of U. The energy of the two-hole binding is much smaller than for the (4 ⇥ 4) cluster with the same t0. The two-hole
binding energy in a single 2⇥2 plaquette is very similar to the results of Ref.20 at t0 = 0. This indicates that it is not favourable
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Supplementary Figure 9. Energy of two-hole binding for 2⇥2 plaquette for t0/t = �0.3. Note that the energy scale is reduced by more than an
order of magnitude compared to the 4 ⇥ 4 plaquette (see the main paper).

Supplementary Figure 10. Static correlators: h7 ", 7 # |ĉ†0ĉ j|7 ", 7 #i of the (4 ⇥ 4) periodic cluster for U/t = 5.56 and t0/t = 0 (left) and
t0/t = �0.3 (right).

to put two holes in a single plaquette. Thus, the pairing is a phenomenon that emerges in the lattice of plaquettes, as we could
also see from the dual Bethe-Salpeter equation. It is also instructive to compare the changes in the static hopping correlator
hĉ†0ĉ ji within the sector (7 ", 7 #) for di↵erent t0 (Supplementary Figure 10). While in the case of t0 = 0 all next-nearest hoppings
are very small, including of t0/t = �0.3 produces ”long-range” hopping correlators in all directions which highlights the role of
kinetic stabilization of the two-hole states.

Supplementary Note 4. Lehmann representation for Green’s functions

The one-particle Green’s function for a finite fermionic system with time-independent Hamiltonian and many body spectrum
Ĥ|ii = Ei|ii has the following Lehmann representation in the Matsubara space:

g�12(⌫) =
1
Z

X

i j

hi|ĉ1�| jih j|ĉ+2�|ii
i⌫ + Ei � E j

(e��Ei + e��E j )

where Z =
P

i e��Ei .
For the two-particle Green’s function (2PGF) we introduce first four ”auxilary” fermionic frequencies (!1 ÷ !4 ) and define

2PGF in Matsubara space as follows21:

��
0

1234(!1,!2,!3) =
1
�2

Z �

0
d⌧1

Z �

0
d⌧2

Z �

0
d⌧3 ei(!1⌧1+!⌧2+!3⌧3)

hT⌧c1�(⌧1)c2�0 (⌧2)c†4�0 (⌧3)c†3�(0)i . (23)

Here the time translation invariance of the imaginary time 2PGF has been used. Note that here the frequencies in the exponen-
tial corresponding to annihilation and creation operators have the same sign in contrast to the usual definition for the Fourier
transform. Correspondingly, energy conservation requires !1 + !2 + !3 + !4 = 0. By restricting the range of integration in a

Ground State crossing Large pair-binding for negative t‘/t

Small pair-binding for positive t‘/tSmall pair-binding for 2x2 cluster
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From DFT to var-QMC
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FIG. 1. SC correlation function Pd(r) for CaCuO2 at di↵erent hole dopings: (a) � = 0.028, (b) � = 0.045, (c) � = 0.087, (d)
� = 0.101, (e) � = 0.125 (here L = 28 instead of L = 30), (f) � = 0.167, (g) � = 0.208, (h) � = 0.247. In each case, we show
Pd(r) for the square lattice size L = 24, 30, 36. For the same distance r we employ the largest value of correlation. We perform
the same procedure in later figures. Inset of each panel: Size extrapolation of P̄d(L) to the thermodynamic limit P̄1

d , whose
numerical value is listed in Table II. The gray line shows the linear approximation. Statistical errors originating from the Monte
Carlo sampling are smaller than the symbol size.

quasiparticle excitation of the d-wave superconductor at
the nodal points. Here, we have shown the data calcu-
lated from the transfer and interaction parameters in the
Hamiltonian fixed at 10% hole doping for simplicity as we
addressed above. However we can test its robustness by
taking � dependent transfer and interaction parameters.
The result is shown in Appendix C and the di↵erence is
small.

After taking the size extrapolation to the thermo-
dynamic limit, we show the � dependence of the or-
der parameter F1

SC
calculated from Eq.(8) and P̄1

d =
limL!1 P̄d(L) in Fig. 2 and the numerical values in Ta-
ble II. This shows a rapid increase of F1

SC
from 0 at � = 0

up to � ⇠ 0.05 as a function of � followed by a plateau
around 0.05  �  0.1 and monotonic decrease with fur-
ther increasing � above around 0.1 in the thermodynamic
limit.

The dome structure ubiquitously observed for Tc in the
cuprates is qualitatively similar to the � dependence in
F1
SC

, but the peak for F1
SC

is located at somewhat lower
� ⇠ 0.05 than the case of experimental Tc, where the op-
timum � is observed to be � ⇠ 0.12 [43].We will discuss
this discrepancy in Sec. V. However, the monotonic de-
crease of F1

SC
with increasing � for � � 0.1 is consistent

with the universal trend of � dependence of the SC gap
identified from the angle-resolved photoemission spectra
(ARPES) and the scanning tunneling microscope (STM)
of the cuprates in general [44, 45], though the SC gap in
the experimental estimate contains an ambiguity associ-
ated with the contribution from the pseudogap.
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0.1
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F S
C P̄d

0.0 0.1 0.2
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0.01
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FIG. 2. The SC order parameter FSC as a function of � for
doped CaCuO2. The gray filled circles show the values of
FSC(L) at L = 24 square lattice calculated from P̄d(L) shown

in Fig. 1 by using FSC(L) =
p

P̄d(L) . The red squares are
the size extrapolated values F1

SC calculated from P̄1
d . Inset

shows the corresponding P̄d(L) at L = 24 and P̄1
d .

In the mean-field picture, the SC gap is the product
of the order parameter F1

SC
and the e↵ective attractive

interaction. If we consider the experimentally observed
maximum gap ⇠ 50 meV [44, 45] and F1

SC
⇠ 0.13, the

characteristic scale of attractive interaction is as large as
⇠ 0.4 eV. This imposes a constraint on theories for the
SC mechanism.
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FIG. 1. SC correlation function Pd(r) for CaCuO2 at di↵erent hole dopings: (a) � = 0.028, (b) � = 0.045, (c) � = 0.087, (d)
� = 0.101, (e) � = 0.125 (here L = 28 instead of L = 30), (f) � = 0.167, (g) � = 0.208, (h) � = 0.247. In each case, we show
Pd(r) for the square lattice size L = 24, 30, 36. For the same distance r we employ the largest value of correlation. We perform
the same procedure in later figures. Inset of each panel: Size extrapolation of P̄d(L) to the thermodynamic limit P̄1

d , whose
numerical value is listed in Table II. The gray line shows the linear approximation. Statistical errors originating from the Monte
Carlo sampling are smaller than the symbol size.

quasiparticle excitation of the d-wave superconductor at
the nodal points. Here, we have shown the data calcu-
lated from the transfer and interaction parameters in the
Hamiltonian fixed at 10% hole doping for simplicity as we
addressed above. However we can test its robustness by
taking � dependent transfer and interaction parameters.
The result is shown in Appendix C and the di↵erence is
small.

After taking the size extrapolation to the thermo-
dynamic limit, we show the � dependence of the or-
der parameter F1

SC
calculated from Eq.(8) and P̄1

d =
limL!1 P̄d(L) in Fig. 2 and the numerical values in Ta-
ble II. This shows a rapid increase of F1

SC
from 0 at � = 0

up to � ⇠ 0.05 as a function of � followed by a plateau
around 0.05  �  0.1 and monotonic decrease with fur-
ther increasing � above around 0.1 in the thermodynamic
limit.

The dome structure ubiquitously observed for Tc in the
cuprates is qualitatively similar to the � dependence in
F1
SC

, but the peak for F1
SC

is located at somewhat lower
� ⇠ 0.05 than the case of experimental Tc, where the op-
timum � is observed to be � ⇠ 0.12 [43].We will discuss
this discrepancy in Sec. V. However, the monotonic de-
crease of F1

SC
with increasing � for � � 0.1 is consistent

with the universal trend of � dependence of the SC gap
identified from the angle-resolved photoemission spectra
(ARPES) and the scanning tunneling microscope (STM)
of the cuprates in general [44, 45], though the SC gap in
the experimental estimate contains an ambiguity associ-
ated with the contribution from the pseudogap.
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p

P̄d(L) . The red squares are
the size extrapolated values F1

SC calculated from P̄1
d . Inset

shows the corresponding P̄d(L) at L = 24 and P̄1
d .

In the mean-field picture, the SC gap is the product
of the order parameter F1

SC
and the e↵ective attractive

interaction. If we consider the experimentally observed
maximum gap ⇠ 50 meV [44, 45] and F1

SC
⇠ 0.13, the

characteristic scale of attractive interaction is as large as
⇠ 0.4 eV. This imposes a constraint on theories for the
SC mechanism.
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Ref. [12] without adjustable parameters . The dominance
of SC order against severely competing stripe states and
AFM state in a wide range of hole concentration is shown
in the solutions for the ground state of all four materials
obtained from the variational Monte Carlo calculations,
which agrees with the experimental results.
The SC order parameter F1

SC
at the optimal doping

shows consistency with the superfluid density measured
in the µSR and the machine learning analysis of the
ARPES data for Bi2212 and Bi2201. F1

SC
decreases with

increasing doping for the doping concentration � > 0.05,
showing a similarity to the SC gap reported in the STM
and ARPES measurements. On the other hand, F1

SC

quickly decreases to zero toward � = 0 for � < 0.05 form-
ing a dome structure which has a similarity to experi-
mental Tc, but the dome peak appears at slightly lower �
for the calculated F1

SC
. This may be attributed to the re-

duced renormalization factor suggested by the broadened
momentum distribution.
From the comparison of the four materials, we have

revealed that U/|t1| is a crucial parameter to control the
strength of the SC order; larger U/|t1| materials show
larger SC order parameter F1

SC
in the realistic materials.

This explains that Tc and the SC gap at the optimum
doping are larger for CaCuO2 than Hg1201, where T opt

c
is well scaled by |t1|F1

SC
as T opt

c ⇠ 0.16|t1|F1
SC

. Though
the experimental uncertainty in the crystal structure pro-
hibits a quantitative comparison, F1

SC
is also larger for

Bi2212 than Bi2201 at least qualitatively, in agreement
with the experimental indications. When we apply the
same scaling T opt

c ⇠ 0.16|t1|F1
SC

to the two Bi compounds
with the calculated order parameter, it also well explains
the experimental sample dependence of Tc. The strong
dependence of F1

SC
on U/|t1| for real materials are sum-

marized in Fig. 10: In the range of 7.0  U/|t1|  8.0,
F1
SC

sharply increases and the calculated sensitive ma-
terials dependence of F1

SC
is well captured within this

range. This simply means that, except for Bi2212, most
of the realistic materials we have studied are positioned
in the weak-coupling side, where the SC order param-
eter rapidly increases with increasing U/|t1|. The
good scaling of T opt

c by 0.16|t1|F1
SC

is also summarized
in Fig. 11, which indicates that the detailed di↵erence of
U/|t1| within the range of 7 < U/|t1| < 9 in the ab initio
parameters reproduces the diverse materials dependence
of T opt

c . Since the larger variance for the theoretical pre-
diction on Bi2201 is ascribed to the experimental un-
certainty of the apical oxygen, it is desired to precisely
determine the apical oxygen position in the experiments.

Based on the successful reproduction of the materials
dependent properties, the underlying superconducting
mechanism is identified by the e↵ective local attraction
emerging from the Mottness, which converts the original
strong repulsion to the attraction.
The SC order parameter has the maximum above the

ab initio values of U/|t1| at 20% larger value of U/|t1|
with the enhancement of 20%-30%. If one can control
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FIG. 10. F1
SC as a function of U/|t1| for the four cuprate

compounds at � = 0.167 plotted from the list in Tables III
and IV.
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FIG. 11. Experimental T opt

c (black crosses or bars) in com-
parison to the Tc = 0.16|t1|F

1
SC scaling for each compound

(purple bars). Tc is taken from Tables III and IV.

on-site and o↵-site interaction independently, further op-
timization of the SC order parameter as much as the
factor 2 larger value beyond the available compounds
synthesized so far without falling into other competing
states can be achieved as the theoretical maximum value
in the present mechanism. By increasing |t1| as well as
the whole parameter values uniformly, T opt

c should ob-
viously increase accordingly. These o↵er a clue for the
materials design in the future.
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Appendix E: Comparison to Hubbard model studies

Here we discuss the crucial di↵erence of the ab ini-
tio results from the extensively studied Hubbard models
without the o↵-site interaction. In the Hubbard model
studies, irrespective of the presence of the next-nearest
transfer t2 or absence of it, in the hole doped region, a
broad consensus seems to be formed, where the ground
state has stripe type long-ranged charge order [3, 5, 6, 67–
72]. The charge and spin stripe states were also suggested
to coexist with weak SC order in some cases [5, 72], but
other studies did not find the SC order [6, 68, 69, 71].

In the Hubbard model studies, the numerical methods
have a variety including the present VMC, density matrix
renormalization group, constrained path quantum Monte
Carlo, tensor network and density matrix embedding the-
ory, which have their own advantages and disadvantages
and they are complementary. When they can be com-
pared with reliable solutions, the above Hubbard model
calculations were benchmarked, which have shown com-
parable accuracy when compared between each state-of-
the-art updated version. Even in quantum spin models,
the level of accuracy of the above methods is roughly
similar [21]. We also refer to recent thorough compar-
isons [73].

On the other hand, when realistic o↵-site interaction is
included, the ground state is reported to be charge homo-
geneous superconducting state [10]. The o↵-site interac-
tion substantially suppresses the SC order but the charge
and spin stripe states are more damaged by the frustra-
tion introduced by the o↵-site interaction. The role of
o↵-site interaction for the stabilization of the SC state
relative to the stripe state was directly demonstrated in
Ref. [10] by the comparison of ab initio result and that
of the Hamiltonian obtained by switching o↵ only the
o↵-site interactions. We confirmed the similar behav-
ior for the present Hamiltonians. The absence of devel-
oped stripe correlations in the SC ground state is seen in
Fig. 14 herein and in Fig.S6 of SM [33].

Appendix F: t2 dependence

Here we show t2 dependence of FSC by starting from
the ab initio Hamiltonian for hole doped CaCuO2 with
other Hamiltonian parameters fixed, where the e↵ect of t2
is monitored beyond the ab initio value primarily within
the realistic range of |t2/t1| (0.2  |t2/t1|  0.3) in
Figs. 16 and 17 for L = 24 lattice. FSC slightly decreases
with increasing t2, which is qualitatively consistent with
a di↵erent approach [63]. However, the variation of FSC

is at most 10% near the optimum doping in the realistic
range. Furthermore, FSC has essentially no t2 depen-
dence in the range 0.0  |t2/t1|  0.2. On the other
hand, the period of the stripe order is known to sensi-
tively depend on t2 [5, 6, 68, 69, 71, 72] in the ground
states of Hubbard models and it may alter the supercon-
ductivity if it coexists, while the present charge uniform
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FIG. 16. SC correlation function Pd(r) for modified t2 from
the CaCuO2 Hamiltonian for L = 24 lattice.
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FIG. 17. SC order parameter FSC as a function of � calculated
for three choices of t2 modified from from CaCuO2 Hamilto-
nian.

superconducting ground state is quite di↵erent.

Appendix G: Analysis of � dependence of energy

In Fig. 18 the total energy per site Etot and the on-
site Coulomb part EU (see panel (a), (c), respectively)
are shown for doped CaCuO2. Each energy contribution
is subtracted by a linear function F (�) = b0 + b1� for
better visibility, where b0 and b1 are listed in Table V
(see gray lines in (a), (c)) and are shown in (b), (d).
The subtracted energies are fitted by a quadratic function
P(�) = c0+c1�+c2�2 to examine the curvature. Explicit
values of the parameters are given in Table V.
The result shows that the total energy is concave as a

function of � of course, which is required from the ther-
modynamic stability, while only EU exhibits convex be-
havior with c2 < 0. Because the e↵ective particle in-
teraction is given by the �2 term, we find that the local
quantity EU is the origin of the attraction while the non-


