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Non-Equilibrium Green Function (NEGF) method

P. S. Damle et al., Phys. Rev. B 64, 201403.

✓ With the time, the size of semiconductors continues to decrease

⇒ Quantum effects become important in the  semiconductor design 

✓ NEGF method describes electron transports in nano-devices

based on its microscopic Hamiltonian! 
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• Introduce Green’s functions 𝑮(𝑬)

𝑮 𝑬 = 𝑬 −𝑯𝐃𝐞𝐯𝐢𝐜𝐞 − 𝚺𝐋 − 𝚺𝑹
−𝟏

𝑯𝑳

𝑳 𝑹

Projection

𝚺𝐋 = 𝚫𝐋 −
𝒊

𝟐
𝚪𝐋

𝚺𝐑 = 𝚫𝐑 −
𝒊

𝟐
𝚪𝐑

• Calculate transmission coefficient 𝑻𝑳→𝑹

𝑻𝑳→𝑹 𝑬 = 𝐓𝐫 𝚪𝐋𝐆 𝐄 𝚪𝑹𝐆 𝐄 †

∝ (𝐜𝐨𝐧𝐝𝐮𝐜𝐭𝐚𝐧𝐜𝐞)

𝑯𝑹
𝑯𝐃𝐞𝐯𝐢𝐜𝐞 + 𝚺𝐋 + 𝚺𝐑𝑯𝐃𝐞𝐯𝐢𝐜𝐞

𝚺𝐋 and 𝚺𝐑 are self energies



Nuclear Fission

✓ A process of a heavy nucleus splitting into two smaller nuclei

✓ It prays an important role in

・ nuclear energy

・ nucleosynthesis

・ RI beam production …

✓ Its microscopic description 

is extremely difficult !

Michael Bender et al., J. Phys. 

G: Nucl. Part. Phys. 47 113002



Difficulties of microscopic description of fission

come from …

① Fission is a large-amplitude motion

(           Perturbation or Linear response theory)

G. Scamps and C. Simenel,

Nature 564 382 (2018).
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come from …

① Fission is a large-amplitude motion

(           Perturbation or Linear response theory)

② Interaction between collective motion 

and single-particle motions is complex

③ Connection between nuclear structure calculation

and reaction calculation is not straightforward

G. Scamps and C. Simenel,

Nature 564 382 (2018).

We approach nuclear fission using 

Non-Equilibrium Green Function method !



Theoretical Formulation

First, we prepare many-body basis

In nuclear fission, both excitation and deformation are important

(𝑸 : deformation parameter)

(𝑬𝒊 : particle-hole excitation energy)

Hartree-Fock w.f.

Superpose Hartree-Fock w.f. |𝑯𝑭 𝑸, 𝑬𝒊 ⟩ (i.e. GCM)
excited states 
for certain 𝑸

𝑸 : deformation 

𝑽(𝑸)
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𝐺 𝐸 = 𝐸𝑁 − 𝐻 +
𝑖

2
Γ

−1

Non-equilibrium Green's function method

＆

Green's function

𝑬: excitation energy
N : overlap matrix

𝑇𝑛,𝑓𝑖𝑠 = Tr[Γ𝑛𝐺Γ𝑓𝑖𝑠𝐺
†]

G. F. Bertsch and K. Hagino, PRC 107 044615 (2023).

K. Uzawa and K. Hagino, PRC 110 014321 (2024). 
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GOE means 
Gaussian Orthogonal Ensemble



However, the dimension of the Hamiltonian matrix is extremely large  
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In the case of 235U(𝑛, 𝑓𝑖𝑠) reaction,
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⇒ Application of the Lanczos method !



The Lanczos method

𝑨𝒙 = 𝝀𝒙 is solved in the Krylov subspace,

and few specific eigenstates are calculated with 𝑶 𝒏𝟐𝑵

direct diagonalization requires 𝑶(𝑵𝟑)

Solve eigenvalue eq. of matrix 𝑨

𝐴 Ԧ𝑥 = 𝜆 Ԧ𝑥 (𝐴 is a symmetric 𝑁 × 𝑁 matrix)

We introduce a subspace called Krylov subspace (𝒒 is arbitrary vector)

span{ Ԧ𝑞, 𝐴 Ԧ𝑞, 𝐴2 Ԧ𝑞, … , 𝐴𝑛−1 Ԧ𝑞}



Spectral decomposition of  Green's function

𝑮(𝑬)𝝁𝝁′ =σ𝝀𝒇𝝀
∗(𝝁′)

𝟏

𝑬−𝑬𝝀
𝒇𝝀(𝝁)

Substituting it, fission probability 𝑻𝒏,𝒇𝒊𝒔(𝑬) becomes 

(𝑯𝒇𝝀 = 𝑬𝝀𝑵𝒇𝝀)

Eigenstates with 𝑬𝝀 ≃ 𝑬 are dominant ! 

(due to                                   factor)

𝑬𝝀 : eigenenergy

𝒇𝝀 : eigenvector



However, the Lanczos method gives eigenstates around the ground state

⋮ Lanczos

◆ Our approach

Calculate eigenstates |𝝀⟩ with 𝑬𝝀 ≃ 𝑬 using the Lanczos method

𝑬



However, the Lanczos method gives eigenstates around the ground state

⇒ Shift-invert Lanczos method

⋮ Lanczos

◆ Our approach

Calculate eigenstates |𝝀⟩ with 𝑬𝝀 ≃ 𝑬 using the Lanczos method

⋮ Shift-invert 
Lanczos

𝑬 𝑬



− 𝝈𝑵

× 𝑬 − 𝝈 −𝟏 𝑯− 𝝈𝑵 −𝟏

✓ Eigenvalue 𝑬 is transformed into 𝑬 − 𝝈 −𝟏

✓ Lanczos method calculates eigenstates with large eigenvalues

⇒ the eigenvalue 𝑬 ≃ 𝝈 is obtained !

Shift-invert transformation

Applying the Lanczos

method to the last eq. 



Application to 𝟐𝟑𝟓𝐔(𝒏, 𝒇)

Solve Skyrme-Hartree-Fock equation for 
236

U

⇒Calculate fission barrier and particle-hole excited states

fission barrier ＆ ph excited states
Hamiltonian matrix

(its dimension is 66103)



𝑯𝒊𝒋 = ⟨𝑸, 𝑬 ෡𝑯 𝑸′, 𝑬′⟩ and 𝑵𝒊𝒋 = ⟨𝑸, 𝑬|𝑸′, 𝑬′⟩

✓ As residual interactions, we apply 

constant pairing interaction and diabatic interaction

GCM calculation

✓ Calculate Hamiltonian matrix 𝑯𝒊𝒋 and overlap matrix 𝑵𝒊𝒋 (GCM)             



✓ 𝝈𝒇𝒊𝒔 is known to be insensitive 

to the fission width 𝚪𝒇𝒊𝒔 (fixed to 125 keV) 

Decay widths

✓ 𝚪𝐧 and 𝚪𝒄𝒂𝒑 are fitted to empirical values 

in the RIPL library             

G. F. Bertsch and K. Hagino, PRC 107 044615 (2023).

K. Uzawa and K. Hagino, PRC 108 024319 (2024). 
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Calculate fission probability 𝑻𝒏,𝒇𝒊𝒔

The summation is σ𝝀=𝟏
𝟔𝟔𝟏𝟎𝟑.

But, 𝝀 with 𝑬𝝀 ≃ 𝑬 is dominant (right figure).

Reduce σ𝝀=𝟏
𝟔𝟔𝟏𝟎𝟑 →σ𝝀=𝟏

𝒌 .

Here 𝒌 is the number of eigenstates  

calculated by shift-invert Lanczos

𝑬𝝀 : eigenenergy

𝒇𝝀 : eigenvector



The ratio is close to one with 𝒌 ≥ 𝟔, and the error is about 𝟏%

The ratio    
𝑻𝐧,𝐟𝐢𝐬 (𝐋𝐚𝐧𝐜𝐳𝐨𝐬)

𝑻𝐧,𝐟𝐢𝐬 (𝐃𝐢𝐫𝐞𝐜𝐭)
   as a function of 𝒌 (# of eigenstates)

 



The CPU time with different matrix dimensions

Red line : direct matrix inversion 𝑮 𝑬 = 𝑬 −𝑯 −𝟏 with LAPACK

Other lines : the shift-invert Lanczos calculations with ARPACK

30-40 time faster 
than direct calculations



Summary

◆ NEGF method is a promising way to describe fission microscopically,

but requires huge numerical costs.

◆ We propose a novel method of calculating 𝑻𝒏,𝒇𝒊𝒔(𝑬)

based on the shift-invert Lanczos + spectral decomposition of 𝑮 𝑬

◆ The error is about 1% and CPU time is about 30-40 time faster.

Shift-Invert Lanczos method is implemented

in ARPACK library or SciPy library (scipy.sparse.linalg.eigsh).

K. Uzawa and K. Hagino, arXiv:2408.06554



Why we need microscopic theory of fission ?r structure and reaction 

• In r-process, nuclear fission plays an important role (fission recycling)

fission of neutron-rich nuclei

⇒ low 𝑺𝒏, low 𝑬∗, and low 𝝆(𝑬∗)

Hauser-Feshbach theory or Langevin eq. may not be applicable…

⇒ Microscopic models without phenomenological assumptions

fission recycling

We apply the non-equilibrium Green function method to nuclear fission!
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