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Microscopic Many-Body Theory
Hamiltonian, wave functions, observables

Postulate:
1 Hamiltonian H = −

∑
i
~2

2m∇2
i +

∑
i Vext(i) +

∑
i<j V(i, j)

2 Particle number, mass, interactions, statistics

Interested in real-world systems such as

Electrons
Quantum Fluids (3He and 4He)
Nuclear systems with all the nastiness of the interactions

We want a “robust” method that is independent of the interactions

We not only want the right answer but also the underlying physical
mechanisms

Generica The questions we ask
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The equation of state of a self-bound Fermi system
A close look

Low densities: Pauli pressure
dominates → repulsive Fermi gas

Spinodal instabilities
No homogeneous solution →
clustering
Many-body binding
Saturation
Other phase transitions ?
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Schematic equation of state
of a self−bound Fermi Fluid

spinodal points

The equation of state is a non-analytic function of
the coupling constant in the grey-shaded area
The equation of state is a non-analytic function of
the density
Order-by-order perturbation theory does not work !
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Simple interactions for Bosons
4He, α-matter...

V =
∑
i<j

V(|ri − rj|)

Optimized Variational Method (Feenberg 1969)
Wave function Ψ0(1, . . .N) =

∏
i<j f(|ri − rj|) .

Hypernetted Chain summations

Optimization δ

δf(r)

〈
Ψ0

∣∣H∣∣Ψ0
〉〈

Ψ0
∣∣Ψ0

〉 = 0

Local Parquet Diagram Summations (Jackson Lande Smith 1983)
Sum all rings and ladders self-consistently
Local Approximations

These meet the above requirements.
and lead to the same set of equations !

Generica Simple systems



Simple interactions for Fermions
3He, electrons

V =
∑
i<j

V(|ri − rj|)

Optimized Variational Method (Feenberg 1969)
Wave function Ψ0(1, . . .N) =

∏
i<j f(|ri − rj|) Φ0(1, . . .N).

Fermi-Hypernetted Chain summations

Optimization δ

δf(r)

〈
Ψ0

∣∣H∣∣Ψ0
〉〈

Ψ0
∣∣Ψ0

〉 = 0

Local Parquet Diagram Summations (Jackson Lande Smith 1983)
Sum all rings and ladders self-consistently
Local Approximations

These meet the above requirements.
Equivalence establisted for ladders, rings, and self-
energy insertions

Generica Simple systems



Localizing parquet diagrams

Bethe Goldstone ladders

Add induced interaction
Ŵ(q, ω)

, calculate S(q)

Energy independent induced
interaction

V(q)

V(q’)

k1  σ1 k’1σ’1

k2 σ2 k’2σ’2

W̃I(q, ω) =
Ṽp−h(q)

1 − χ0(q, ω)Vp−h(q)

S(q) = −
∫ ∞

0

d~ω
π

=m
[
χ0(q, ω) + χ2

0(q, ω)W̃I(q, ω)
]

!
= −

∫ ∞

0

d~ω
π

=m
[
χ0(q, ω) + χ2

0(q, ω)W̃I(q)
]

Generica Ladders
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The problem of nuclear systems
... where Pandora’s box opens

(Non-relativistic) nuclear Hamiltonian:

H = −
∑

i

~2

2m
∇2

i +
∑

i
Vext(i) +

∑
i<j

V̂(i, j)

V̂(i, j) =
∑
α

Vα(r)Oα(i, j)

Operator Basis

O1(i, j; r̂) ≡ Oc = 1,

O3(i, j; r̂) ≡ σi · σj ,

O5(i, j; r̂) ≡ S(i, j; r̂)
≡ 3(σi · r̂)(σj · r̂)− σi · σj

O7(i, j; r̂) ≡ L · S
O2n(i, j; r̂) = O2n−1(i, j; r̂)τi · τj .

Interactions in operator basis
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Realistic nuclear interactions



The problem of nuclear systems
... where Pandora’s box opens

(Non-relativistic) nuclear Hamiltonian:

H = −
∑

i

~2

2m
∇2

i +
∑

i
Vext(i) +

∑
i<j

V̂(i, j)

V̂(i, j) =
∑
α

Vα(r)Pα(i, j)

Projector Basis

Ps =
1
4
(1 − σ1 · σ2)

Pt+ =
1
6
(3 + σ1 · σ2 + S12(r̂))

Pt− =
1
12

(3 + σ1 · σ2 − 2S12(r̂))

O7 = L · S

Interactions in projector basis
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Dealing with realistic nuclear interactions
A plausible (?) generalization of Jastrow-Feenberg

“Symmetrized operator product wave function”

ΨSOP
0 = S

[ N∏
i,j=1
i<j

f̂(i, j)
]
Φ0 ≡ FNΦ0 ,

Correlation functions:

f̂(i, j) =
n∑

α=1
fα(rij) Ôα(i, j) ,

Pair distribution functions:

ĝ(i, j) =
n∑

α=1
gα(rij) Ôα(i, j) ,

With

ρ2gα(|r − r′|) =

〈
ΨSOP

0

∣∣∣∑i<j δ(r − ri)δ(r′ − rj)Ôα(i, j)
∣∣ΨSOP

0
〉

1
ν2T r12 Ô2

α(1, 2)
〈
ΨSOP

0

∣∣∣ΨSOP
0

〉 .

Realistic nuclear interactions



The problem of variational wave functions
A technical nuiscance ?

With symmetrization, the pair distribution functions have the form

gα(r) =
∑
βγ

fβ(r)fγ(r)F
(α)
βγ (r) . {α, β, γ} ∈ {S,T+,Tt}

The coefficients F(α)
βγ (r) are not diagonal in the indices α, β, γ.

There is no systematic way to calculate these to infinite order.
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Spin-singlet correlation functions fsinglet(rij) contribute to the
spin-triplet distribution function gtriplet(rij) and vice versa !
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The problem of variational wave functions
How to deal with the problem

Options:
Ignore the problem

The problem is an artefact of the “Symmetrized Operator
Product” wave function:
Parquet diagram summations (Smith & Jackson 1988) do not lead
to such effects.
There is physics to be learned !

If the effect is real then it must be represented by
non-parquet diagrams !

Realistic nuclear interactions
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Beyond Parquet
Beyond the Bethe Goldstone equation

Assume a simple interaction

v̂(q) = ṽc(q) + ṽσ(q)σi · σj

= ṽS(q)PS + ṽT(q)PT

Calculate Goldstone Ladder diagrams

First diagram: Ordinary Bethe-Goldstone ladder
Second diagram: Ladder with an induced interaction
Not parquet but the same ingredients

=

∫
d3q

(2π)3ρ

1
E(k, q)

[VS(q)PS + VT(q)PT]︸ ︷︷ ︸
direct term

+4
∫

d3q
(2π)3ρ

1
E(k, q)

Vσ(q)Wσ(k − q)(PT − 3PS)︸ ︷︷ ︸
commutator

Realistic nuclear interactions
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v̂(q) = ṽc(q) + ṽσ(q)σi · σj
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Assume a simple interaction

v̂(q) = ṽc(q) + ṽσ(q)σi · σj

= ṽS(q)PS + ṽT(q)PT

Calculate Goldstone Ladder diagrams

q

q’

k1  σ1 k’1σ’1

k2 σ2 k’2σ’2

q

q

q’

k1 σ1 k’1 σ’1

k2 σ2 k’2 σ’2

q

q
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k1 σ1 k’1 σ’1

k2 σ2 k’2 σ’2

First diagram: Ordinary Bethe-Goldstone ladder
Second diagram: Ladder with an induced interaction
Not parquet but the same ingredients
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Beyond Parquet
Instead of equations

Sum these:
VI   = + + + ······ + + + + ······ =

Parquet: Supplement in Bethe-Goldstone equation

V(r) → V(r) + VI(r) + WI(r)

Non-parquet contributions are larger than all other many-body effects
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Rings
Without spin-orbit forces

Unit Q̂1 = 1, “Longitudinal” Q̂3 = (σ1 · q̂)(σ2 · q̂) and
“Transverse” operators Q̂5 = σ1σ2 − (σ1 · q̂)(σ2 · q̂)
Effective interactions:

Ŵ(α)(q;ω) =
∑
α odd

Ṽ(α)
p−h(q)

1 − χ0(q;ω)Ṽ(α)
p−h(q)

Q̂α

Ṽ(c)
p−h(q;ω) ≡ Ṽ(c)

p−h(q) +
1
4
χ
(⊥)
0 (q;ω)

[
Ṽ(LS)

p−h(q)
]2

,

Ṽ(T)
p−h(q;ω) ≡ Ṽ(T)

p−h(q) +
1
8
χ
(⊥)
0 (q;ω)

[
Ṽ(LS)

p−h(q)
]2

.

χ
(⊥)
0 (q;ω) = 1

N
T rσ

∑
h

|q̂ × h|2

k2
F

2(t(p)− t(h))
(~ω − iη)2 − (t(p)− t(h))2

Parquet diagrams with spin-orbit interactions Rings with spin-orbit
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Rings
Induced spin-orbit interaction

Ŵ(odd)
LS (q;ω) = W(LS)(q, ω)L̃·S

W(LS)(q, ω) = 1
2

Ṽ(LS)
p−h(q)

1 − χ0(q;ω)Ṽ(c)
p−h(q;ω)

+
1
2

Ṽ(LS)
p−h(q)

1 − χ0(q;ω)Ṽ(T)
p−h(q;ω)

,

Some small terms have been omitted.

Parquet diagrams with spin-orbit interactions Rings with spin-orbit



Key takeaways from spin-orbit potentials

Summing rings with spin-orbit potentials is not a big deal

Much uncertainty in the spin-orbit and tensor interactions
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Effective interactions contain the spin-orbit force in the form

V(LS)
eff (r) ≈ ψT(r) [VLS(r) + WLS(r)]ψT(r)

where ψT(r) triplet pair wave function of the Bethe-Goldstone
equation =

√
1 + Γ

(T)
dd (r) “direct correlation function”.
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Key takeaways from spin-orbit potentials
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Applications:
Singlet and Triplet pairing neutron matter

Textbook knowledge: BCS gap-equation for the pairing function ∆(k)

∆(k) = −1
2
∑
k′

〈
k
∣∣V∣∣k′〉∆(k′)

E(k′)

Single-particle spectrum

E(k) =
√
(ε(k)− µ)2 + |∆(k)|2〈

k
∣∣V∣∣k′〉: (effective) pairing interaction

Multicomponment version

∆(`)(k) = − 1
2
∑
`′

∫
d3k′

(2π)3
V` `′(k, k′)∆(`′)(k′)√
(ε(k′)− µ)2 + D2(k′)

.

E(k) ≈
√
(ε(k)− µ)2 + D2(k) D2(k) = 1

4π

∫
dΩk |∆(k)|2

Applications: S and P wave superfluidity



Strongly interacting systems

correlated BCS state∣∣CBCS
〉
=

∑
m,N

1
I(N)
m

FN
∣∣m(N)

〉〈
m(N)

∣∣BCS
〉

Landau potential

〈H − µN〉c =

〈
CBCS

∣∣H − µN
∣∣CBCS

〉〈
CBCS

∣∣CBCS
〉 .

Expansions in correlated wave functions
Identify Jastrow-diagrams with parquet-diagrams
Minimize with respect to the Bogoliubov amplitudes

Applications: S and P wave superfluidity
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Summary without technicalities

The gap equation remains the same but

The interaction matrix elements and the single particle spectrum
become dependent on the gap function〈

k
∣∣V∣∣k〉 →

〈
k
∣∣V[∆]

∣∣k〉
ε(k) → ε(k,∆)

In the weakly coupled limit, these can be obtained from ground
state properties
Contain, among others, medium polarization and self-energy
corrections.

Applications: S and P wave superfluidity
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S wave pairing:
The importance of “beyond parquet”
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key takeaways:
Results for Reid 68 and Argonne are quite similar
Parquet-type many-body corrections reduce gap
Additional repulsion from non-parquet diagrams reduces the gap
by another factor of 2 !
Good agreement with QMC should be taken with a grain of salt.

Applications: S and P wave superfluidity
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P wave superfluidity
Leaving out many-body effects

Bare interaction results: Some history
(Tamagaki, Takatsuka 1970-1972)

3P2-3F2 gap with bare interactions

and spin-orbit force turned off
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However: “Without an
attractive spin-orbit in-
teraction, neutrons would
form a 3P0 superfluid,
in which the spin and
orbital angular momenta
are anti-aligned, rather
than the 3P2 state, in
which they are aligned.”
(Gezerlis et al. in “Pair-
ing and superfluidity of
nucleons in neutron star”)
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P wave superfluidity
The importance of many-body effects

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

∆
 (

k
F
) 

 (
M

eV
)

kF  (fm
-1

)

bare, no L*S
parquet
twisted

3
P0 gap, Reid 68 interaction

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

∆
 (

k
F
) 

 (
M

eV
)

kF  (fm
-1

)

bare, no L*S
parquet
twisted

3
P0 gap, AV8 interaction

key takeaways:

Results for Reid 68 and Argonne are reasonably different
Parquet-type many-body corrections reduce the gap
Additional attraction from non-parquet diagrams enhances the
gap by up to a factor of 2 !

Applications: S and P wave superfluidity



P wave superfluidity
The importance of many-body effects

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

∆
 (

k
F
) 

 (
M

eV
)

kF  (fm
-1

)

bare, no L*S
parquet
twisted

3
P0 gap, Reid 68 interaction

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

∆
 (

k
F
) 

 (
M

eV
)

kF  (fm
-1

)

bare, no L*S
parquet
twisted

3
P0 gap, AV8 interaction

key takeaways:
Results for Reid 68 and Argonne are reasonably different

Parquet-type many-body corrections reduce the gap
Additional attraction from non-parquet diagrams enhances the
gap by up to a factor of 2 !

Applications: S and P wave superfluidity



P wave superfluidity
The importance of many-body effects

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

∆
 (

k
F
) 

 (
M

eV
)

kF  (fm
-1

)

bare, no L*S
parquet
twisted

3
P0 gap, Reid 68 interaction

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

∆
 (

k
F
) 

 (
M

eV
)

kF  (fm
-1

)

bare, no L*S
parquet
twisted

3
P0 gap, AV8 interaction

key takeaways:
Results for Reid 68 and Argonne are reasonably different
Parquet-type many-body corrections reduce the gap

Additional attraction from non-parquet diagrams enhances the
gap by up to a factor of 2 !

Applications: S and P wave superfluidity



P wave superfluidity
The importance of many-body effects

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

∆
 (

k
F
) 

 (
M

eV
)

kF  (fm
-1

)

bare, no L*S
parquet
twisted

3
P0 gap, Reid 68 interaction

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

∆
 (

k
F
) 

 (
M

eV
)

kF  (fm
-1

)

bare, no L*S
parquet
twisted

3
P0 gap, AV8 interaction

key takeaways:
Results for Reid 68 and Argonne are reasonably different
Parquet-type many-body corrections reduce the gap
Additional attraction from non-parquet diagrams enhances the
gap by up to a factor of 2 !

Applications: S and P wave superfluidity



Dynamic Many-Body Theory (DMBT)
(Multi-)particle fluctuations for bosons

and fermions

Make the correlated wave function time dependent !

|Ψ(t)〉 = e−iE0t/~ Fe
1
2 δU |Φ0〉

〈Φ0|e
1
2 δU†F†Fe

1
2 δU|Φ0〉]1/2

≡ e−iE0t/~ |Φ(t)〉∣∣Ψ0
〉
: model ground state, δU(t): excitation operator

Action principle: Assume a weak external potential Uext(r; t):

δ

∫ t1

t0

〈
Ψ(t)

∣∣∣∣Ĥ − i~ ∂
∂t

+ Uext(t)
∣∣∣∣Ψ(t)

〉
dt

= δ

∫ t1

t0

〈
Φ(t)

∣∣∣∣Ĥ − Eo − i~ ∂
∂t

+ Uext(t)
∣∣∣∣Φ(t)〉dt = 0 .

Outlook: Dynamic Many-Body Theory
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Neutron matter response
....at the 1p-1h level

Density channel
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Example
3He in 3D

Experiments:

S(Q, ω) = Sc(Q, ω) +
σi
σc

SI(Q, ω)
Experiments, P = 0.83 bar
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DMBT:

S(Q, ω) = Sc(Q, ω) +
σi
σc

SI(Q, ω)
DMBT sum,  ρ = 0.0166 Å−3
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Summary
The importance of many-body effects

Diagrammatic many-body methods give access to energetics,
dynamics, and phase transitions;

S-wave pairing gets suppressed by the repusive triplet interaction
in intermediate states;
3P2-3F2 is suppressed by the suppression of the spin-orbit
interaction by short ranged correlations;
3P0 is enhanced by the suppression of the spin-orbit interaction by
short ranged correlations.

⇒ We have challenged a 50 years old narrative about P-wave
pairing
⇒ The nucleon interaction folks need to agree on something.

Dynamic response and single-particle spectrum is still in the
works.
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