

Recent advances in ab initio calculations of heavy nuclei

Supported by

Takayuki Miyagi

Recent progress in many-body theories 2024 @ University of Tsukuba, Japan (Sept. 24, 2024)¹

Collaborators

Chalmers University of Technology: A. Ekström, C. Forssen

Oak Ridge National Laboratory: G. Hagen, Baishan Hu

TRIUMF: J. D. Holt, P. Navratil

TU Darmstadt: K. Hebeler

University of Notre Dame: S. R. Stroberg

University of Mainz: W. Jiang

University of Tennessee: T. Papenbrock, Z. Sun

University of Durham: I. Vernon

Why heavy nuclei?

Neutron number

Why heavy nuclei?

筑波大学

計算科学研究センター Center for Computational Sciences

Neutron number

Nuclear ab initio calculation

計算科学研究センター Center for Computational Sciences

Nuclear many-body problem

- Green's function Monte Carlo
- No-core shell model
- Nuclear lattice effective field theory
- Self-consistent Green's function
- Coupled-cluster

...

- In-medium similarity renormalization group
- Many-body perturbation theory

Nuclear interaction from chiral EFT

Weinberg, van Kolck, Kaiser, Epelbaum, Glöckle, Meißner, Entem, Machleidt, ...

Lagrangian construction

- Chiral symmetry
- Power counting
- Systematic expansion
 - Unknown LECs
 - Many-body interactions
 - Estimation of truncation error

Taken from A. Ekström et al., Phys. Rev. C 97, 024332 (2018).

Many-body problem: similarity transformation methods

 $H|\Psi\rangle = E_{\rm g.s.}|\Psi\rangle$ Multiply e^{Ω} to both side Similarity transformation $= E_{\mathrm{g.s}} e^{\mathbf{\Omega}} |\Psi\rangle$ Similarity transformation $\tilde{H}|\mathrm{ref}\rangle = E_{\mathrm{g.s.}}|\mathrm{ref}\rangle$ |ref> |1p1h> |2p2h> |ref> |1p1h> |2p2h> $|\Psi
angle$ = c0 + C^{pq}rs + C^{pqr}stu + C^pq Multiply e^Ω $|\mathrm{ref}\rangle =$ All the complicated stuff is taken over by Ω . How can we find Ω operator?

Coupled-cluster method (CCM), in-medium similarity renormalization group (IMSRG), ...

筑波大学

計算科学研究センター Center for Computational Sciences

計算科学研究センター Center for Computational Sciences

筑波大学

Similarity renormalization group

$$H(s) = U^{\dagger}(s)H(s=0)U(s)$$
$$\frac{dU(s)}{ds} = -\eta(s)U(s)$$
$$\frac{dH(s)}{ds} = [\eta(s), H(s)]$$

H. Hergert et al., Phys. Rep. 621, 165 (2016).S. R. Stroberg et al., Annu. Rev. Nucl. Part. Sci. 69, 307 (2019).

The anti-Hermitian generator $\eta(s)$ is arbitrary.

How can we choose the functional form to suppress the off-diagonal MEs?

^{筑波大学} 新設計算科学研究センター Center for Computational Sciences

Similarity renormalization group

$$H(s) = U^{\dagger}(s)H(s=0)U(s)$$
$$\frac{dU(s)}{ds} = -\eta(s)U(s)$$
$$\frac{dH(s)}{ds} = [\eta(s), H(s)]$$

H. Hergert et al., Phys. Rep. 621, 165 (2016). S. R. Stroberg et al., Annu. Rev. Nucl. Part. Sci. 69, 307 (2019).

A simple example:

$$H(s) = \begin{pmatrix} c+z & x \\ x & c-z \end{pmatrix} = cI + z(s)\sigma_3 + x(s)\sigma_1 \qquad \eta(s) = \frac{i}{2}\frac{x(s)}{z(s)}\sigma_2$$

2 x 2 Hamiltonian

 $\frac{dx(s)}{ds} = -x(s) \rightarrow x(s) = x(0) \exp(-s)$ Exponential decay of the off-diagonal ME. note : $[\sigma_2, \sigma_3] = 2i\sigma_1$

Center for Computational Sciences

Similarity renormalization group

$$H(s) = U^{\dagger}(s)H(s=0)U(s)$$
$$\frac{dU(s)}{ds} = -\eta(s)U(s)$$
$$\frac{dH(s)}{ds} = [\eta(s), H(s)]$$

H. Hergert et al., Phys. Rep. 621, 165 (2016). S. R. Stroberg et al., Annu. Rev. Nucl. Part. Sci. 69, 307 (2019).

A simple example:

An expect

$$H(s) = \begin{pmatrix} c+z & x \\ x & c-z \end{pmatrix} = cI + z(s)\sigma_3 + x(s)\sigma_1 \qquad \eta(s) = \frac{i}{2}\frac{x(s)}{z(s)}\sigma_2$$
$$\frac{dx(s)}{ds} = -x(s) \rightarrow x(s) = x(0)\exp(-s) \quad \text{Exponential decay of the off-diagonal ME}$$

2 x 2 Hamiltonian

 $\frac{1}{ds} = -x(s) \rightarrow x(s) = x(0) \exp(-s)$ Exponential decay of the off-diagon

Off-diagonal MEs need to be suppressed

Energy gap from the diagonal MEs

(Anti-Hermitian)

$\begin{aligned} \frac{d\Omega}{ds} &= \eta(s) - \frac{1}{2} [\Omega(s), \eta(s)] + \cdots \\ H(s) &= e^{\Omega(s)} H(s=0) e^{-\Omega(s)} \approx E(s) + \sum_{12} f_{12}(s) \{a_1^{\dagger}a_2\} + \frac{1}{4} \sum_{1234} \Gamma_{1234}(s) \{a_1^{\dagger}a_2^{\dagger}a_4a_3\} \\ \eta(s) &= \sum_{12} \eta_{12}(s) \{a_1^{\dagger}a_2\} + \sum_{1234} \eta_{1234}(s) \{a_1^{\dagger}a_2^{\dagger}a_4a_3\} \\ \eta_{12} &= \frac{1}{2} \arctan\left(\frac{2f_{12}}{f_{11} - f_{22} + \Gamma_{1212}}\right) \\ \eta_{1234} &= \frac{1}{2} \arctan\left(\frac{2\Gamma_{1234}}{f_{11} + f_{22} - f_{33} - f_{44} + A_{1234}}\right) -40 \left[-40 \right] \end{aligned}$

 $A_{1234} = \Gamma_{1212} + \Gamma_{3434} - \Gamma_{1313} - \Gamma_{2424} - \Gamma_{1414} - \Gamma_{2323}$

Approximation:

- H(s) and $\eta(s)$ are two-body operators.
- A few % error in the ground-state energy and radius

In-medium similarity renormalization group approach

計算科学研究センター Center for Computational Sciences

筑波大学

 $\begin{aligned} \frac{d\Omega}{ds} &= \eta(s) - \frac{1}{2} [\Omega(s), \eta(s)] + \cdots \\ H(s) &= e^{\Omega(s)} H(s=0) e^{-\Omega(s)} \approx E(s) + \sum_{12} f_{12}(s) \{a_1^{\dagger}a_2\} + \frac{1}{4} \sum_{1234} \Gamma_{1234}(s) \{a_1^{\dagger}a_2^{\dagger}a_4a_3\} \\ \eta(s) &= \sum_{12} \eta_{12}(s) \{a_1^{\dagger}a_2\} + \sum_{1234} \eta_{1234}(s) \{a_1^{\dagger}a_2^{\dagger}a_4a_3\} \\ \eta_{12} &= \frac{1}{2} \arctan\left(\frac{2f_{12}}{f_{11} - f_{22} + \Gamma_{1212}}\right) \\ \eta_{1234} &= \frac{1}{2} \arctan\left(\frac{2\Gamma_{1234}}{f_{11} + f_{22} - f_{33} - f_{44} + A_{1234}}\right) \\ A_{1234} &= \Gamma_{1212} + \Gamma_{3434} - \Gamma_{1313} - \Gamma_{2424} - \Gamma_{1414} - \Gamma_{2323} \end{aligned}$

Approximation:

- H(s) and $\eta(s)$ are two-body operators.
- A few % error in the ground-state energy and radius

G. Tenkila et al., arXiv:2212.08188

|1p1h> |2p2h>

lref>

State Energy [a.u.]

Ground

|ref> |1p1h> |2p2h>

Towards heavy nuclei

NN+3N Hamiltonian (harmonic oscillator basis)

Parameters controlling numerical calculations

- Frequency (hw)
- emax (number of major shells)
- E3max (sum of 3B HO quanta)

One has to increase emax and E3max until results converge!

Limited E_{3max} does not allow to access heavy systems.

筑波大学

計算科学研究センター Center for Computational Sciences

Towards heavy nuclei

NN+3N Hamiltonian (harmonic oscillator basis)

Parameters controlling numerical calculations

Frequency (hw)

^{筑波大学} 新算科学研究センター Center for Computational Sciences

30

Residual interactions

NO2B 3N storage scheme

16

Store only the matrix elements entering NO2B approximation.

Extrapolation

Asymmptotic behavior expected from the 2nd order MBPT.

$$E(E_{3\max}) = \mathbf{A}\gamma_{\frac{2}{n}} \left[\left(\frac{E_{3\max} - \boldsymbol{\mu}}{\boldsymbol{\sigma}} \right)^n \right] + \mathbf{C}$$

Fitting parameters

 $\mu \approx 3(2n_F + l_F)$

The same form can be expected for any operators dominated by one-body part, e.g., radius

Extrapolation

Asymmptotic behavior expected from the 2nd order MBPT.

$$E(E_{3\max}) = A\gamma_{\frac{2}{n}} \left[\left(\frac{E_{3\max} - \mu}{\sigma} \right)^n \right] + C$$

Fitting parameters

 $\mu \approx 3(2n_F + l_F)$

The same form can be expected for any operators dominated by one-body part, e.g., radius

18

Why heavy nuclei?

計算科学研究センター Center for Computational Sciences

Neutron number

筑波大学 **Correlation connecting finite and infinite systems** 計算科学研究センター **Center for Computational Sciences**

Robustness of the correlation Narrower prediction of R_{skin}(²⁰⁸Pb)

S(208Pb) (fm)

*Assumption: proton radius is fitted.

Sampling parameters

Non-implausible (NI) samples

17 Unknown LECs @ Delta-full N2LO

Constraints:

Naturalness: LECs should be O(1)

Steps:

- (2) Evaluate the selected observables
- (3) Measure how the calculated observables are far from the experiments. If it is too far, θ is
 implausible and rejected.

Out of ~ 10^9 parameter sets, 34 non-implausible (NI) interactions were found.

History matching:

- Sampling 17 parameters in (delta-full) chiral EFT such that the parameter set is consistent with some selected data.
- Proton-neutron scattering phase shifts, E(²H), R_p(²H), Q(²H), E(³H), E(⁴He), R_p(⁴He), E(¹⁶O), and R_p(¹⁶O).

 $\sim 10^9$ parameter sets

34 NI parameter sets

B. Hu, W. Jiang, T. Miyagi, et al., Nat. Phys. 18, 1196 (2022).

Calibration:

 Assign weights according to the reproduction of ⁴⁸Ca data, known as importance resampling method.

 $w_{i} = \frac{\mathcal{L}(D|\boldsymbol{\theta}_{i})}{\sum_{j=1}^{34} \mathcal{L}(D|\boldsymbol{\theta}_{j})},$ $\mathcal{L}(D|\boldsymbol{\theta}_{i}) = \mathcal{N}(D, \sigma_{\exp}^{2} + \sigma_{\chi \text{EFT}}^{2} + \sigma_{\text{MB}}^{2})$

B. Hu, W. Jiang, T. Miyagi, et al., Nat. Phys. 18, 1196 (2022).

Calibration:

 Assign weights according to the reproduction of ⁴⁸Ca data, known as importance resampling method.

 $w_i = \frac{\mathcal{L}(D|\boldsymbol{\theta}_i)}{\sum_{j=1}^{34} \mathcal{L}(D|\boldsymbol{\theta}_j)},$ $\mathcal{L}(D|\boldsymbol{\theta}_i) = \mathcal{N}(D, \sigma_{\exp}^2 + \sigma_{\chi \text{EFT}}^2 + \sigma_{\text{MB}}^2)$

Validation & prediction:

★ The weighted samples are approximately equivalent to the samples extracted from $p(\theta|D)$. PPD = { $\mathcal{O}_{target}(\theta) : \theta \sim P(\theta|^{48}Ca)$ }

B. Hu, W. Jiang, T. Miyagi, et al., Nat. Phys. 18, 1196 (2022).

Calibration:

 Assign weights according to the reproduction of ⁴⁸Ca data, known as importance resampling method.

$$w_{i} = \frac{\mathcal{L}(D|\boldsymbol{\theta}_{i})}{\sum_{j=1}^{34} \mathcal{L}(D|\boldsymbol{\theta}_{j})},$$
$$\mathcal{L}(D|\boldsymbol{\theta}_{i}) = \mathcal{N}(D, \sigma_{\exp}^{2} + \sigma_{\chi \text{EFT}}^{2} + \sigma_{\text{MB}}^{2})$$

Validation & prediction:

The weighted samples are approximately

Neutron skins										
Observable	median	$68\%~\mathrm{CR}$	$90\%~\mathrm{CR}$							
$R_{\rm skin}(^{48}{\rm Ca})$	0.164	[0.141, 0.187]	[0.123, 0.199]							
$R_{\rm skin}(^{208}{\rm Pb})$	0.171	[0.139, 0.200]	[0.120, 0.221]							

Neutron skin of ²⁰⁸Pb

Ab initio prediction 0.14 < Rskin(²⁰⁸Pb) < 0.20 is relatively narrow.

Constraining on S-wave scattering phase shift rules out thick Rskin(²⁰⁸Pb).

Correlation connecting few- and many-body systems

Ongoing development

ences

ref energy (MeV)

* See S. Yoshida's talk for the details of the eigenvector continuation

The nuclear ab initio calculations of heavy nuclei are becoming feasible.

We combined the state-of-the-art techniques to predict the neutron skin of ²⁰⁸Pb, including the possible uncertainties.

The well-known R_{skin}(²⁰⁸Pb) vs L correlation can be found in ab initio calculations.

NN scattering phase-shift is crucial to constrain R_{skin}(²⁰⁸Pb).

More things need to be done.

Better quantified uncertainty, Cutoff independence, CREX vs PREX,

The same strategy can be applied to other research.

♦ 0vbb decay, WIMP-nucleus scattering, electric dipole moment, …

Backup slides

Valence-space in-medium similarity renormalization group

筑波大学

9

計算科学研究センター

Center for Computational Sciences

Normal ordering wrt a single Slater determinant

^{筑波大学} 新算科学研究センター Center for Computational Sciences

Initial Hamiltonian is expressed with respect to nucleon vacuum

$$H = \sum_{pq} t_{pq} a_p^{\dagger} a_q + \frac{1}{4} \sum_{pqrs} V_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r + \frac{1}{36} V_{pqrstu} a_p^{\dagger} a_q^{\dagger} a_r^{\dagger} a_u a_t a_s$$

Hamiltonian normal ordered with respect to a single Slater determinant

$$H = E_0 + \sum_{pq} f_{pq} \{a_p^{\dagger} a_q\} + \frac{1}{4} \sum_{pqrs} \Gamma_{pqrs} \{a_p^{\dagger} a_q^{\dagger} a_s a_r\} + \frac{1}{36} W_{pqrstu} \{a_p^{\dagger} a_q^{\dagger} a_r^{\dagger} a_u a_t a_s\}$$

$$E_{0} = \sum_{pq} t_{pq} \rho_{pq} + \frac{1}{2} \sum_{pqrs} V_{pqrs} \rho_{pr} \rho_{qs} + \frac{1}{6} \sum_{pqrstu} V_{pqrstu} \rho_{ps} \rho_{qt} \rho_{ru}, \quad \Gamma_{pqrs} = V_{pqrs} + \sum_{tu} V_{pqtrsu} \rho_{tu}$$

$$f_{pq} = t_{pq} + \sum_{rs} V_{prqs} \rho_{rs} + \frac{1}{2} \sum_{rstu} V_{prsqtu} \rho_{rt} \rho_{su}, \qquad \qquad W_{pqrstu} = V_{pqrstu}$$

◆ Normal ordered two-body (NO2B) approximation: $\frac{1}{4} \sum_{pqrs} \Gamma_{pqrs} \{a_p^{\dagger} a_q^{\dagger} a_s a_r\}$

E3max extrapolation

^{熟液大学} 計算科学研究センター Center for Computational Sciences

One has to make sure that HF results are well converged.

Assuming that the employed nuclear interaction is soft enough: $E_{\text{corr}} \approx E_{\text{MBPT}}^{[2]}$ $\Gamma_{abij} = V_{abij}^{\text{NN}} + \sum_{k} V_{abkijk}^{3\text{N}} n_k$ With an optimal frequency, MP(2) energy can be approximated as $E_{\text{MBPT}}^{[2]} \approx \frac{1}{4\hbar\Omega} \sum_{abij} \frac{\Gamma_{ijab}\Gamma_{abij}}{e_i + e_j - e_a - e_b}$

• MP(2) enegy difference between E3max and E3max+1: $\Delta E_{\text{MBPT}}^{[2]} = \frac{1}{2\hbar\Omega} \sum_{ijk} \sum_{ab} \frac{V_{ijab}^{\text{NN}} V_{abkijk}^{3\text{N}}}{e_i + e_j + e_k - e_a - e_b - e_k} \delta_{E_{3\text{max}}, e_a + a_b + e_k}$

• Further assumption:
$$V_{abij}^{NN} \approx \bar{V}^{NN} \exp\left\{-\left[\frac{m\epsilon_0(e_a + e_b - e_i - e_j)}{\Lambda_{NN}^2}\right]^n\right\}, \quad V_{abkijk}^{3N} \approx \bar{V}^{3N} \exp\left\{-\left[\frac{m\epsilon_0(e_a + e_b + e_k - e_i - e_j - e_k)}{\Lambda_{3N}^2}\right]^n\right\}$$

$$\Delta E_{\text{MBPT}}^{[2]} \approx AX \exp\left[-\frac{X^n}{\sigma^n}\right], \quad X = E_{3\text{max}} - \mu, \quad \frac{1}{\sigma^n} = m^n \epsilon_0^n \left(\frac{1}{\Lambda_{\text{NN}}^{2n}} + \frac{1}{\Lambda_{3\text{N}}^{2n}}\right)$$
One finds:

$$E(E_{3\text{max}}) = A\gamma_{\frac{2}{n}} \left[\left(\frac{E_{3\text{max}} - \mu}{\sigma}\right)^n\right] + C$$
After integrating the above, one obtains:

38

E_{3max} convergence in heavy nuclei

TM, S. R. Stroberg, P. Navrátil, K. Hebeler, and J. D. Holt, Phys. Rev. C 105, 014302 (2022).

[S. Binder et al., Phys. Rev. C 87, 021303 (2013).]

Radii

Radii

41

Non-implausible interactions

^{筑波大学} **計算科学研究センター** Center for Computational Sciences

• Sequentially rule out the possibility:

Error assignments

計算科学研究センター Center for Computational Sciences

	History-matching observables								
	Observable	\boldsymbol{z}	$arepsilon_{ ext{exp}}$	$arepsilon_{\mathrm{model}}$	$arepsilon_{ m method}$	$arepsilon_{ m em}$	PPD		
	$E(^{2}\mathrm{H})$	-2.2246	0.0	0.05	0.0005	0.001%	$-2.22\substack{+0.07\\-0.07}$		
	$R_{ m p}(^2{ m H})$	1.976	0.0	0.005	0.0002	0.0005%	$1.98\substack{+0.01\\-0.01}$		
	$Q(^{2}\mathrm{H})$	0.27	0.01	0.003	0.0005	0.001%	$0.28\substack{+0.02\\-0.02}$		
	$E(^{3}\mathrm{H})$	-8.4821	0.0	0.17	0.0005	0.01%	$-8.54^{+0.34}_{-0.37}$		
	$E(^{4}\mathrm{He})$	-28.2957	0.0	0.55	0.0005	0.01%	$-28.86^{+0.86}_{-1.01}$		
	$R_{ m p}(^4{ m He})$	1.455	0.0	0.016	0.0002	0.003%	$1.47\substack{+0.03\\-0.03}$		
	$E(^{16}O)$	127.62	0.0	1.0	0.75	0.5%	$-126.2^{+3.0}_{-2.8}$		
	$R_{ m p}(^{16}{ m O})$	2.58	0.0	0.03	0.01	0.5%	$2.57\substack{+0.06 \\ -0.06}$		
Calibration observables									
	Observable	z	$arepsilon_{\mathrm{exp}}$	$arepsilon_{\mathrm{model}}$	$arepsilon_{ ext{method}}$	$arepsilon_{ m em}$	PPD		
	$E/A(^{48}\mathrm{Ca})$	-8.667	0.0	0.54	0.25		$-8.58\substack{+0.72\\-0.72}$		
	$E_{2^+}({ m ^{48}Ca})$	3.83	0.0	0.5	0.5		$3.79\substack{+0.86\\-0.96}$		
	$R_{ m p}(^{48}{ m Ca})$	3.39	0.0	0.11	0.03		$3.36\substack{+0.14\\-0.13}$		
	Validation observables								
	Observable	z	$arepsilon_{\mathrm{exp}}$	$arepsilon_{\mathrm{model}}$	$arepsilon_{ m method}$	$arepsilon_{ m em}$	PPD		
	$E/A(^{208}\mathrm{Pb})$	-7.867	0.0	0.54	0.5		$-8.06\substack{+0.99\\-0.88}$		
	$R_{ m p}(^{208}{ m Pb})$	5.45	0.0	0.17	0.05		$5.43\substack{+0.21 \\ -0.23}$		
	$lpha_D(^{48}\mathrm{Ca})$	2.07	0.22	0.06	0.1		$2.30\substack{+0.31 \\ -0.26}$		
	$\alpha_D(^{208}{ m Pb})$	20.1	0.6	0.59	0.8		$22.6^{+2.1}_{-1.8}$		

Error assignments

