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Why heavy nuclei?

NCSM, GFMC, CC, SCGF, MBPT, IMSRG, …
e.g. S. R. Stroberg, et al., Phys. Rev. Lett. 126, 022501 (2021).
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Plenty of interests:

• Nuclear forces

• Emergence & evolution of shell structure

• Emergence of shape 

• …

https://wwwkm.phys.sci.osaka-u.ac.jp/en/research/r01.html

F. S. Queiroz, arXiv:1605.08788.

Why heavy nuclei?
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Nuclear ab initio calculation

Quarks & gluons

Ideal path (LQCD)Non-perturbative

Nuclear many-body problem
✦ Green’s function Monte Carlo

✦ No-core shell model

✦ Nuclear lattice effective field theory

✦ Self-consistent Green’s function

✦ Coupled-cluster

✦ In-medium similarity renormalization group

✦ Many-body perturbation theory 

✦ …
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Nuclear interaction from chiral EFT

Lagrangian construction

✦ Chiral symmetry

✦ Power counting

Systematic expansion

✦ Unknown LECs

✦ Many-body interactions

✦ Estimation of truncation error

Weinberg, van Kolck, Kaiser, Epelbaum, Glöckle, Meißner, Entem, Machleidt, …

Taken from A. Ekström et al., Phys. Rev. C 97, 024332 (2018).
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Many-body problem: similarity transformation methods

Similarity transformation

How can we find Ω operator?

✦ Coupled-cluster method (CCM), in-medium similarity renormalization group (IMSRG), …

Multiply eΩ to both side

Similarity transformation
|ref>   |1p1h>  |2p2h> |ref>   |1p1h>  |2p2h>

… … … …

=  c0                      + cpq                    + cpqrs                   + cpqrstu                    + …

=                      

…

Multiply eΩ

All the complicated stuff is taken over by Ω.



8

In-medium similarity renormalization group approach

Similarity renormalization group

The anti-Hermitian generator η(s) is arbitrary. 

How can we choose the functional form to suppress the off-diagonal MEs?

HodHd Hd Hod →0

H. Hergert et al., Phys. Rep. 621, 165 (2016).
S. R. Stroberg et al., Annu. Rev. Nucl. Part. Sci. 69, 307 (2019).
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In-medium similarity renormalization group approach

Similarity renormalization group

A simple example: 

✦ 2 x 2 Hamiltonian
Exponential decay of the off-diagonal ME.

HodHd Hd Hod →0

H. Hergert et al., Phys. Rep. 621, 165 (2016).
S. R. Stroberg et al., Annu. Rev. Nucl. Part. Sci. 69, 307 (2019).
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In-medium similarity renormalization group approach

Similarity renormalization group

A simple example: 

✦ 2 x 2 Hamiltonian

An expected form 

Exponential decay of the off-diagonal ME.

Off-diagonal MEs need to be suppressed
Energy gap from the diagonal MEs (Anti-Hermitian)

HodHd Hd Hod →0

H. Hergert et al., Phys. Rep. 621, 165 (2016).
S. R. Stroberg et al., Annu. Rev. Nucl. Part. Sci. 69, 307 (2019).
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In-medium similarity renormalization group approach

Approximation:

✦ H(s) and η(s) are two-body operators.

✦ A few % error in the ground-state energy 
and radius

|ref>   |1p1h>  |2p2h> |ref>   |1p1h>  |2p2h>

H. Hergert, Front. Phys. 8, (2020).

Ground-state energies of 16O isotopes
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In-medium similarity renormalization group approach

Approximation:

✦ H(s) and η(s) are two-body operators.

✦ A few % error in the ground-state energy 
and radius

|ref>   |1p1h>  |2p2h> |ref>   |1p1h>  |2p2h>

Ne atom

CCSD

Expt.

CCSD(T)

Basis parameter

G. Tenkila et al., arXiv:2212.08188

IMSRG



NN+3N Hamiltonian (harmonic oscillator basis)

Parameters controlling numerical calculations

✦ Frequency (hw)

✦ emax (number of major shells)

✦ E3max (sum of 3B HO quanta)

One has to increase emax and E3max until results 
converge!

Limited E3max does not allow to access heavy systems.
13

Towards heavy nuclei

hw

e=3

e=2

e=1

e=0

E3=5



14

Towards heavy nuclei

132Sn
1.8/2.0 (EM)
emax = 14, hw=16 MeV

No sign of convergence!

48Ca
1.8/2.0 (EM)
emax = 14, hw=16 MeV

NN+3N Hamiltonian (harmonic oscillator basis)

Parameters controlling numerical calculations

✦ Frequency (hw)

✦ emax (number of major shells)

✦ E3max (sum of 3B HO quanta)
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Residual interactions

Hamiltonian:

Normal ordering 

Effect of residual 3N

3N2N1N

CC calculations from S. Binder et al., Phys. Rev. C 87, 021303 (2013). 

Solid: with W term
Dashed: without W term

W term: only ~ 1% of the total gs energy!

NO2B approximation (neglect W term)

Residual 3N

Input of post mean-field calc. (NO2B)
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NO2B 3N storage scheme

Store only the matrix elements entering NO2B approximation.

Determined by symmetry of one-body density matrix
c.f. parity and rotational symmetry for a spherical reference

Now possible!

132Sn
1.8/2.0 (EM)
emax = 14, hw=16 MeV
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Extrapolation

Asymmptotic behavior expected from the 2nd order MBPT.

Fitting parameters
The same form can be expected for any operators 
dominated by one-body part, e.g., radius

Eg
s (

M
eV

)

Included E3max=28 resut is reproduced

132Sn
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Extrapolation

Asymmptotic behavior expected from the 2nd order MBPT.

Fitting parameters

Eg
s (

M
eV

)

Included

132Sn

208Pb

MBPT(3)

The same form can be expected for any operators 
dominated by one-body part, e.g., radius
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https://wwwkm.phys.sci.osaka-u.ac.jp/en/research/r01.html

F. S. Queiroz, arXiv:1605.08788.

Why heavy nuclei?

Accessible!
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Extrapolating to the infinite system

Infinite nuclear matter & neutron star
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Extrapolating to the infinite systemρ, density

ε,
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Neutron matter curve

Symmetric matter curve

L

Infinite nuclear matter & neutron star

Solve TOV equation

J. Margueron et al., Phys. Rev. C 97, 025806 (2018).

Observed mass
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Correlation connecting finite and infinite systems

*Assumption: proton radius is fitted.

For L1 < L2, ρn(L2) < ρn(L1)  
→  Rn(L1) < Rn(L2) 
→ rskin(L1) < rskin(L2)

Motivation:
Robustness of the correlation
Narrower prediction of Rskin(208Pb)

Figure taken from B. Alex Brown, Phys. Rev. Lett. 85, 5296 (2000).

Correlation from MF calculations
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Sampling parameters

Non-implausible (NI) samples 

✦ 17 Unknown LECs @ Delta-full N2LO

✤Constraints:

❖Naturalness: LECs should be O(1) 

✦ Steps:

✤ (1) Generate a random 17 dimensional vector θ

✤ (2) Evaluate the selected observables

✤ (3) Measure how the calculated observables are far from the experiments. If it is too far, θ is 
implausible and rejected.

Out of ~ 109 parameter sets, 34 non-implausible (NI) interactions were found.

θ

Target observableExp.

accepted rejected

Compute

EFT error, m
any-body error, …
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Neutron skin thickness of 208Pb

History matching:

✦ Sampling 17 parameters in (delta-full) chiral 
EFT such that the parameter set is 
consistent with some selected data.

✦ Proton-neutron scattering phase shifts, 
E(2H), Rp(2H), Q(2H), E(3H), E(4He), 
Rp(4He), E(16O), and Rp(16O).

~ 109 parameter sets 34 NI parameter sets

History matching

B. Hu, W. Jiang, T. Miyagi, et al., Nat. Phys. 18, 1196 (2022).
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Neutron skin thickness of 208Pb

Calibration:

✦ Assign weights according to the 
reproduction of 48Ca data, known as 
importance resampling method.

Calibration

History matching

B. Hu, W. Jiang, T. Miyagi, et al., Nat. Phys. 18, 1196 (2022).
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Neutron skin thickness of 208Pb

Calibration:

✦ Assign weights according to the 
reproduction of 48Ca data, known as 
importance resampling method.

Validation & prediction: 

✦ The weighted samples are approximately 
equivalent to the samples extracted from 
p(θ|D).

Validation
Prediction

Calibration

History matching

B. Hu, W. Jiang, T. Miyagi, et al., Nat. Phys. 18, 1196 (2022).



History matching
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Neutron skin thickness of 208Pb

Calibration

Validation
Prediction

B. Hu, W. Jiang, T. Miyagi, et al., Nat. Phys. 18, 1196 (2022).

Calibration:

✦ Assign weights according to the 
reproduction of 48Ca data, known as 
importance resampling method.

Validation & prediction: 

✦ The weighted samples are approximately 
equivalent to the samples extracted from 
p(θ|D).
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Ab initio prediction 0.14 < Rskin(208Pb) < 
0.20 is relatively narrow.

Constraining on S-wave scattering phase 
shift rules out thick Rskin(208Pb).

Correlation connecting few- and many-body 
systems

Neutron skin of 208Pb

B. Hu, W. Jiang, T. Miyagi, et al., Nat. Phys. 18, 1196 (2022).
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Construction of a fast and accurate emulator

✦ parametric matrix model P. Cook et al., arXiv: 2401.11694

With the emulator, one can explore

✤ Impact of 3N interaction in medium-mass nuclei

✤Observables to further constrain LECs in ChEFT

Ongoing development

IMSRG emulator

Ground-state energy of 44Ca

IMSRG results

Em
ul

at
ed

 re
su

lts

Data-driven eigenvector continuation*-like method

~ 10 6-9 times speed up!

* See S. Yoshida’s talk for the details of the eigenvector continuation

Hang Yu
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Summary & outlook

The nuclear ab initio calculations of heavy nuclei are becoming feasible.

We combined the state-of-the-art techniques to predict the neutron skin of 208Pb, including the 
possible uncertainties. 

The well-known Rskin(208Pb) vs L correlation can be found in ab initio calculations.

NN scattering phase-shift is crucial to constrain Rskin(208Pb).

More things need to be done.

✦ Better quantified uncertainty, Cutoff independence, CREX vs PREX, …

The same strategy can be applied to other research.

✦ 0vbb decay, WIMP-nucleus scattering, electric dipole moment, …
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Backup slides
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Valence-space in-medium similarity renormalization group

: frozen core
: valence
: outside

evolution
Core  Valence Outside  

O
ut
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Core  Valence Outside  
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ut
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 C
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e

Similarity transformation

s: flow parameter

matrix element we want to suppress
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Normal ordering wrt a single Slater determinant

Initial Hamiltonian is expressed with respect to nucleon vacuum

✦ Hamiltonian normal ordered with respect to a single Slater determinant

✦ Normal ordered two-body (NO2B) approximation:
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E3max extrapolation

One has to make sure that HF results are well converged.

Assuming that the employed nuclear interaction is soft enough:

With an optimal frequency, MP(2) energy can be approximated as

▪ MP(2) enegy difference between E3max and E3max+1:

▪ Further assumption:

One finds: 

After integrating the above, one obtains:   
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E3max convergence in heavy nuclei

TM, S. R. Stroberg, P. Navrátil, K. Hebeler, and J. D. Holt, Phys. Rev. C 105, 014302 (2022).

Previous limit

132Sn

=              +               +                + 

FullNO2B approx.
NO2B approximation error ~ a few % 
[S. Binder et al., Phys. Rev. C 87, 021303 (2013).]

Exp.

Asymptotic form: 
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Radii

Asymptotic form:

Exp.:4.709(8) fm

TM, S. R. Stroberg, P. Navrátil, K. Hebeler, and J. D. Holt, Phys. Rev. C 105, 014302 (2022).
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Radii

Charge radius
Exp: 5.501(1) fm

Empirical Gaussian fit

Neutron skin: 0.174 fm
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Non-implausible interactions

• Sequentially rule out the possibility:
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Error assignments
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Error assignments


