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The need for ab-initio many-body dynamics in NP
ν scattering for supernovae
explosion and NS cooling
capture reactions for crust
heating and nucleosynthesis

cross sections for dark-matter
discovery and neutrino physics
transport properties of neutron
star matter for X-ray emission
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Inclusive cross section and the response function
cross section determined by the response function

RO(ω) =
∑
f

∣∣∣⟨f |Ô|Ψ0⟩
∣∣∣2 δ (ω − Ef + E0)

excitation operator Ô specifies the vertex

Extremely challenging classically for strongly correlated quantum systems

dipole response of 16O

Bacca et al. PRL(2013) LIT+CC

quasi-elastic EM response of 12C

Lovato et al. PRL(2016) GFMC+Laplace
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Inclusive cross section and the response function
cross section determined by the response function

RO(ω) =
∑
f

∣∣∣⟨f |Ô|Ψ0⟩
∣∣∣2 δ (ω − Ef + E0)

excitation operator Ô specifies the vertex

Same structure not only in NP but also condensed matter, chemistry,. . .

density excitations in 1D-rods

Motta et al. PRA(2016) QMC+Laplace

neutron scattering of liquid 4He

Vitali et al. PRB(2010) QMC+Laplace
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Many body dynamics with Integral Transforms

A possible way out with integral transform techniques
Efros (1989), Carlson & Schiavilla (1992), Efros, Leidemann & Orlandini (1994)

T (σ) =

∫
dωK(σ, ω)RO(ω) = ⟨0|Ô†K

(
σ, Ĥ − E0

)
Ô|0⟩

Laplace
K(σ, ω) = e−σω

Lovato et al. PRL(2016) GFMC

Lorentz
K(σ, ω; Γ) = Γ

Γ2+(σ−ω)2

Bacca et al. PRL(2013) LIT+CC

PROBLEM: the inversion procedure is often ill-posed, difficult to assign
error bars on the reconstructed response function
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Many body dynamics with Integral Transforms II

A possible way out with integral transform techniques
Efros (1989), Carlson & Schiavilla (1992), Efros, Leidemann & Orlandini (1994)

T (σ) =

∫
dωK(σ, ω)RO(ω) = ⟨0|Ô†K

(
σ, Ĥ − E0

)
Ô|0⟩

Fourier
K(σ, ω) = e−iσω

T (σ) = ⟨0|Ô† exp
(
−iσ(Ĥ − E0)

)
Ô|0⟩ = ⟨0|Ô†(σ)Ô(0)|0⟩

The transformation is unitary so the inversion is “easy”

PROBLEM: we don’t really have efficient and unbiased methods
to do time evolution for interacting many-particle systems

ADVANTAGE: if we did, we could do more than linear response!
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)
Ô|0⟩ = ⟨0|Ô†(σ)Ô(0)|0⟩

The transformation is unitary so the inversion is “easy”

PROBLEM: we don’t really have efficient and unbiased classical methods
to do time evolution for interacting many-particle systems

ADVANTAGE: if we did, we could do more than linear response!
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Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate
the behaviour of another quantum system
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First programmable quantum devices are here
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Real time dynamics on current generation devices
AR, Li, Carlson, Gupta, Perdue PRD(2020)

Error mitigation is crucial
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Real time dynamics on current generation devices
AR, Li, Carlson, Gupta, Perdue PRD(2020)

Error sources
decoherence (environment)
imperfect calibration
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Real time correlators on current generation devices
First steps toward nuclear response: real-time correlators

R(ω) =

∫
dteiωtC(t) with C(t) = ⟨Ψ0|O(t)O(0)|Ψ0⟩

Can be done “easily” using one additional qubit (Somma, Ortiz et al. (2001))

Baroni, Carlson, Gupta, Li, Perdue, AR PRD(2022)

expensive to control some systematic errors

⟨Ψ̃0|Oe−it(H−E0)O|Ψ̃0⟩ ≠ ⟨Ψ̃0|O(t)O(0)|Ψ̃0⟩ if |Ψ̃0⟩ ≠|Ψ0⟩
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Fourier moments on (more) current generation devices

R(ω) ≈
∑

k
ck(ω)M(tk) with M(t) = ⟨Ψ0|Oe−iHtO|Ψ0⟩

Both devices and error mitigation have come a long way in last few years

Kiss, Grossi, AR arXiv:2401.13048 (2024)
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Exclusive cross sections in neutrino oscillation experiments

Goals for ν oscillation exp.
neutrino masses
accurate mixing angles
CP violating phase

P (να → να) = 1− sin2(2θ)sin2
(
∆m2L

4Eν

)
need to use measured reaction products to constrain Eν of the event

DUNE, MiniBooNE, T2K, Minerνa, NOνA,. . .
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Towards exclusive scattering using quantum computing
response R(ω) ⇔ probability for events at fixed ω
exclusive x-sec → events with specific final states

IDEA: prepare the following state on QC

|Φ⟩ =
∑

ω

√
R(ω) |ω⟩ ⊗ |ψω⟩

measurement of first register returns ω with probability R(ω)!
after measurement, the second register contains final states at ω!

AR & Carlson PRC(2019)
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IDEA: prepare the following state on QC

|Φ⟩ =
∑

ω

√
R(ω) |ω⟩ ⊗ |ψω⟩

measurement of first register returns ω with probability R(ω)!
after measurement, the second register contains final states at ω!

Difficult to prepare |Φ⟩ but we can
prepare instead the following state

|Φ∆⟩ =
∑
ω

√
R∆(ω) |ω⟩ ⊗ |ψω⟩

with R∆ an integral transform of the
response with energy resolution ∆

AR & Carlson PRC(2019), AR PRA(2020)
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Prospects of impact of QC on Nuclear Reactions

Minimal setup
103 lattice with spacing a ≈ 1− 2fm

4 spin-isospin states for each particle

−→ we need at least 4000 orbitals

for energy resolution ∆ω we need total
evolution time T ≈ 1/∆ω

1011 − 1012 operations and ≈ 4000 qubits [AR et al. PRD (2020)]
109 − 1011 operations and ≈ 6000 qubits [J.Watson et al. arXiv:2312.05344]

107 − 109 operations and ≈ 150− 300 qubits [AR, Spagnoli, Lissoni (in prep.)]
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Prospects of impact of QC on Nuclear Reactions

Cost estimates for realistic response in medium mass nuclei
We need ≈ 102 − 104 qubits and push the gate buttons ≈ 107 − 1012 times

Still possible to optimize further (1st quantization needs ≈ 500)
Insights for classical methods could come before we ha2ve a large QC!
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Nuclear dynamics with quantum (inspired) computing?
We can prepare the following state

|Φ∆⟩ =
∑
ω

√
R∆(ω) |ω⟩ ⊗ |ψω⟩

with R∆ an integral transform of the
response with energy resolution ∆ AR & Carlson PRC(2019), AR PRA(2020)

Gaussian approach uses the fact that Chebyshev polynomials can be
evaluated efficiently on quantum computers (Berry, Childs, Low, Chuang, . . . )

We can approximate expectation
values like

⟨Φ0|Pn(H)|Φ0⟩

using classical many-body methods
like Coupled Cluster

Sobczyk, AR PRE(2022)
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Spin response of bulk neutron matter
Dynamic spin structure factor

Sσ(q⃗, ω) =

∫
dteiωt⟨s⃗(t, q⃗) · s⃗(0, q⃗)⟩

νN scattering and ν pair-production
emissivity dominated by Sσ(q⃗, ω) for
small wave-lenghts |q⃗| → 0

Ab-initio calculation of |q⃗| = 0 response with up to N = 114 neutrons and
realistic nuclear interactions Sobczyk, Jiang, AR arXiv:2407.20986
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Summary & Conclusions

Advances in theory and computing are opening the way to ab-initio
calculation of equilibrium properties in the medium-mass region
New ideas are needed to study nuclear dynamics in large open-shell
nuclei, exclusive processes and out-of-equilibrium dynamic
Quantum Computing has the potential to bridge this gap and
increasingly better experimental test-beds are being built
Error mitigation techniques will be critical to make the best use of
these noisy near-term devices
Early impact of QC on nuclear physics might come as insights into
classical many-body methods
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