Quantum Computing for Nuclear Physics
Alessandro Roggero

Knocked-out
Proton

M0Odeling

Pro Pon
S00km |2 X 3000 km_ b -
Melson, Janka & Marek ApJL (2015) :
RPMBT22 - Tsukuba
Nuclear A
I N F N STructure and A =
REactions 2 Y Q

23 Sep, 2024



The need for ab-initio many-body dynamics in NP

@ v scattering for supernovae @ cross sections for dark-matter
explosion and NS cooling discovery and neutrino physics

@ capture reactions for crust @ transport properties of neutron
heating and nucleosynthesis star matter for X-ray emission
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Inclusive cross section and the response function

@ cross section determined by the response function

Rolw) = 3" [(7101%0)[[ 6 (w — By + Eo)
f
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é e excitation operator O specifies the vertex
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Inclusive cross section and the response function

@ cross section determined by the response function
. 2
Ro(w) = _[(£101%0)| 0 (w — Ef + Fo)
!

e excitation operator O specifies the vertex

Extremely challenging classically for strongly correlated quantum systems )
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Inclusive cross section and the response function

¢ @ cross section determined by the response function

Same structure not only in NP but also condensed matter, chemistry,. ..

Rolw) = 3" [(7101%0)[[ 6 (w — By + Eo)
f

Y N
ﬁ e excitation operator O specifies the vertex
Y //

)

@ density excitations in 1D-rods
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@ neutron scattering of liquid *He
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Many body dynamics with Integral Transforms

A possible way out with integral transform techniques
Efros (1989), Carlson & Schiavilla (1992), Efros, Leidemann & Orlandini (1994)

T(0) = / dwK (0,w)Ro(w) = (0|OTK (0, ji g Eo) 0l0)

Laplace Lorentz
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PROBLEM: the inversion procedure is often ill-posed, difficult to assign
error bars on the reconstructed response function
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Many body dynamics with Integral Transforms Il

A possible way out with integral transform techniques
Efros (1989), Carlson & Schiavilla (1992), Efros, Leidemann & Orlandini (1994)

T(o) = / dwK (0.0)Ro(w) = (0/0'K (o, 5  By) Ol0)

Fourier
K(o,w) = e v

T(0) = (0]O" exp (—ia(ﬁ - Eo)) 010) = (0|07 (2)O(0)|0) J

The transformation is unitary so the inversion is “easy”
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Many body dynamics with Integral Transforms Il

A possible way out with integral transform techniques
Efros (1989), Carlson & Schiavilla (1992), Efros, Leidemann & Orlandini (1994)

T(o) = / dwK (0.0)Ro(w) = (0/0'K (o, 5  By) Ol0)

Fourier
K(o,w) = e v

T(0) = (0]O" exp (—ia(ﬁ - Eo)) 010) = (0|07 (2)O(0)|0) J

The transformation is unitary so the inversion is “easy”

PROBLEM: we don't really have efficient and unbiased methods
to do time evolution for interacting many-particle systems

ADVANTAGE: if we did, we could do more than linear response!
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Many body dynamics with Integral Transforms Il

A possible way out with integral transform techniques
Efros (1989), Carlson & Schiavilla (1992), Efros, Leidemann & Orlandini (1994)

T(o) = / dwK (0.0)Ro(w) = (0/0'K (o, 5  By) Ol0)

Fourier
K(o,w) = e v

T(0) = (0]O" exp (—ia(ﬁ - Eo)) 010) = (0|07 (2)O(0)|0) J

The transformation is unitary so the inversion is “easy”

PROBLEM: we don't really have efficient and unbiased classical methods
to do time evolution for interacting many-particle systems

ADVANTAGE: if we did, we could do more than linear response!
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Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate
the behaviour of another quantum system

Quantum System Quantum System
we have control over we want to simulate

@p
A

figure from E.Zohar
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Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate
the behaviour of another quantum system

Quantum System Quantum System
we have control over we want to simulate

Electrode

figure from E.Zohar
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Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate
the behaviour of another quantum system J

Quantum System Quantum System
we have control over we want to simulate
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First programmable quantum devices are here

ASCR Report on a
Quantum Computing
Testbed for Science

Quantum Computer

some figures from M.Savage
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Real time dynamics on current generation devices
AR, Li, Carlson, Gupta, Perdue PRD(2020)
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Real time dynamics on current generation devices
AR, Li, Carlson, Gupta, Perdue PRD(2020)

e bare results from QPU
= ideal result
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Real time dynamics

Probability of 3 nulceons on same site

on current generation devices
AR, Li, Carlson, Gupta, Perdue PRD(2020)
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Real time correlators on current generation devices

o First steps toward nuclear response: real-time correlators
R(w) = /dteiwtC(t) with  C(t) = (Pp|O(t)O(0)|Ty)

@ Can be done “easily” using one additional qubit (Somma, Ortiz et al. (2001))
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Real time correlators on current generation devices

o First steps toward nuclear response: real-time correlators

R(w) = / dte'C(t) with C(t) = (Wo|O(t)O(0)]Wo)

@ Can be done “easily” using one additional qubit (Somma, Ortiz et al. (2001))
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@ expensive to control some systematic errors

Li, Perdue, AR PRD(2022)
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Fourier moments on (more) current generation devices
Rw)~ Y enlw)M(ty) with  M(1) = (¥o|Oe™ 0] W)

Both devices and error mitigation have come a long way in last few years J

# CNOT gates # CNOT gates
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Exclusive cross sections in neutrino oscillation experiments

Goals for v oscillation exp.

@ neutrino masses

@ accurate mixing angles
candidate Pzt o -
@ CP violating phase
Run 5390, Event 1100
. . Am?2L
P(vg — vg) = 1 — sin?(20)sin® | ——
4F,

@ need to use measured reaction products to constrain E,, of the event
DUNE, MiniBooNE, T2K, Minerva, NOvA,. ..

—— —

Sanford Underground
Research Facility
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Towards exclusive scattering using quantum computing
@ response R(w) < probability for events at fixed w

@ exclusive x-sec — events with specific final states

IDEA: prepare the following state on QC
@) = >0 VRW) |w) @ |¢h)
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Towards exclusive scattering using quantum computing
@ response R(w) < probability for events at fixed w

@ exclusive x-sec — events with specific final states

IDEA: prepare the following state on QC
@) = >0 VRW) |w) @ |¢h)

@ measurement of first register returns w with probability R(w)!
@ after measurement, the second register contains final states at w!

c
Osmje ray

Run 5390, Event 1100

Blume-Kohout et al. (2013)

AR & Carlson PRC(2019)
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Towards exclusive scattering using quantum computing

@ response R(w) < probability for events at fixed w

@ exclusive x-sec — events with specific final states

IDEA: prepare the following state on QC
@) = >0 VRW) |w) @ |¢h)

e measurement of first register returns w with probability R(w)!
@ after measurement, the second register contains final states at w!

Difficult to prepare |®) but we can
prepare instead the following state

12a) = Y VRAW) w) ® |)

with R an integral transform of the
response with energy resolution A

— Gaussian
— Fejer

AR & Carlson PRC(2019), AR PRA(2020)
R



Prospects of impact of QC on Nuclear Reactions

¢
¢ e

¢

Minimal setup

e 10 lattice with spacing a ~ 1 — 2fm

@ 4 spin-isospin states for each particle

— we need at least 4000 orbitals

o for energy resolution Aw we need total

evolution time 7'~ 1/Aw

e 10 — 10'2 operations and =2 4000 qubits [AR et al. PRD (2020)]
o 109 — 1011 operations and = 6000 quitS [J.Watson et al. arXiv:2312.05344]
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Prospects of impact of QC on Nuclear Reactions

Minimal setup

o5 @ 103 lattice with spacing a ~ 1 — 2fm

’ %LL ¢ @ 4 spin-isospin states for each particle
o

— we need at least 4000 orbitals

o for energy resolution Aw we need total
evolution time 7'~ 1/Aw

e 10 — 10'2 operations and =2 4000 qubits [AR et al. PRD (2020)]
o 109 — 1011 operations and = 6000 quitS [J.Watson et al. arXiv:2312.05344]

Al . ® ¢ e e

@ 107 — 10 operations and = 150 — 300 qubits [AR, Spagnoli, Lissoni (in prep.)]
—




Prospects of impact of QC on Nuclear Reactions

Cost estimates for realistic response in medium mass nuclei

We need ~ 10% — 10* qubits and push the gate buttons ~ 107 — 10'? times
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Prospects of impact of QC on Nuclear Reactions

Cost estimates for realistic response in medium mass nuclei

We need ~ 10% — 10* qubits and push the gate buttons ~ 107 — 10'? times
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Prospects of impact of QC on Nuclear Physics

Cost estimates for realistic response in medium mass nuclei

We need ~ 10% — 10* qubits and push the gate buttons ~ 107 — 10'? times
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Cost estimates for realistic response in medium mass nuclei
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Prospects of impact of QC on Nuclear Physics

Cost estimates for realistic response in medium mass nuclei

We need ~ 10% — 10* qubits and push the gate buttons ~ 107 — 10'? times
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o Still possible to optimize further (bounds are loose)

@ Insights for classical methods could come before we have a large QC!
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Nuclear dynamics with quantum (inspired) computing?

We can prepare the following state

1Ba) =) VERAW) |w) @ [th)

with Ra an integral transform of the
response with energy resolution A

— Gaussian
— Fejer

AR & Carlson PRC(2019), AR PRA(2020)

@ Gaussian approach uses the fact that Chebyshev polynomials can be
evaluated efficiently on quantum computers (Berry, Childs, Low, Chuang, ... )
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Nuclear dynamics with quantum (inspired) computing?

We can prepare the following state

1Ba) =) VERAW) |w) @ [th)

with Ra an integral transform of the

response with energy resolution A

— Gaussian
— Fejer

AR & Carlson PRC(2019), AR PRA(2020)

@ Gaussian approach uses the fact that Chebyshev polynomials can be
evaluated efficiently on quantum computers (Berry, Childs, Low, Chuang, ... )

We can approximate expectation
values like

(@o| P (H)|Po)

using classical many-body methods
like Coupled Cluster
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Spin response of bulk neutron matter

Dynamic spin structure factor

5 (g 0) = / dtet (3, @) - 5(0, 0))

vN scattering and v pair-production
emissivity dominated by S, (g, w) for
small wave-lenghts |¢] — 0

Ab-initio calculation of |§] = 0 response with up to N = 114 neutrons and

realistic nuclear interactions Sobczyk, Jiang, AR arXiv:2407.20986
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Summary & Conclusions

Advances in theory and computing are opening the way to ab-initio
calculation of equilibrium properties in the medium-mass region
New ideas are needed to study nuclear dynamics in large open-shell
nuclei, exclusive processes and out-of-equilibrium dynamic
Quantum Computing has the potential to bridge this gap and
increasingly better experimental test-beds are being built

Error mitigation techniques will be critical to make the best use of
these noisy near-term devices

Early impact of QC on nuclear physics might come as insights into
classical many-body methods

Run 5390, Event 1100
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