Quasi-steady state descriptions for photo-doped Mott insulators

Yuta Murakami (RIKEN CEMS)

YM, S. Takayoshi, T. Kaneko, Z. Sun, D. Golež, A. J. Millis and P. Werner, Comm. Phys. 5, 23 (2022).
 YM, S. Takayoshi, T. Kaneko, A. Läuchli and P. Werner, Phys. Rev. Lett. 130, 106501 (2023).
 Review: YM, D Golež, M Eckstein, P Werner, arXiv:2310.05201.

Acknowledgement

Uni. Fribourg

P. Werner

A. Millis

Jozef Stefan Ins.

D. Golež

Uni. Hamburg

M. Eckstein

A. Läuchli

Tsinghua Uni.

Konan University

Osaka University

Z. Suni

S. Takayoshi

T. Kaneko

Background: Physics out of strong light-matter coupling

Weak light excitation (Linear regime)

Same frequencies of input and output

Matter stays in equilibrium

Strong light excitation (Nonlinear regime)

 Change in properties of output light ex) High-harmonic generation

 Change in properties of matter ex) Insulator-metal transition, light-induced superconductor

Control of properties of light and matter

Strong light-matter coupling and emergent phenomena

Rapid development on strong laser techniques in THz and mid-infrared regime

Potential impact on next generation photo-electronics technology & new spectroscopy techniques

ex) Fast memory, Spintronics, 6G telecommunication, Attosecond spectroscopy, etc..

Appeal of strongly correlated systems

Strongly correlated systems: Crucial role of interactions between electrons

➡ Various emergent collective phenomena in and out of equilibrium

Examples of Photo-induced phase transitions

General question: Origin of nonequilibrium phases?

Doping charge carriers into Mott insulators: Equilibrium

A. Kordyuk, Low. Temp. Phys. 41, 319 (2015)

Doping activates correlations between spin, orbital and charge

Emergence of rich phases

Doping charge carriers into Mott insulators: Equilibrium

A. Kordyuk, Low. Temp. Phys. 41, 319 (2015)

Doping activates correlations between spin, orbital and charge

> Emergence of rich phases

Doping charge carriers into Mott insulators

Various types of charge carriers are activated at the same time

cf. Equilibrium doping \rightarrow holon **or** doublon

Long-life time of photo-carriers and metastable states

Life-time of doublon • holon

Just after excitation

$$U \gg v$$
 $\Box > \tau_{
m rec} \gg 1/v$ (Exponential with U/v)

N. Strohmaiser, et. al., PRL 104, 080401 (2010).
R. Sensarma, et. al., PRB 82, 224302 (2010).
A. Rosch, et. al., PRL 101, 265301 (2008).

Metastable steady state

- (Approximate) conservation of doublons and holons
- Intraband relaxation + Cooling via environment

General question & three complementary approaches

What kinds of metastable states emerge in photo-doped Mott insulators?

1) Direct time-evolution

Methods: Exact Diagonalization, Tensor network, Dynamical mean-field theory, etc...

2) Quasi-NESS approach

Approximate quasi-steady state with a true steady state supported by external bath

J. Li, et. al., PRB **102**, 165136 (2020). J. Li and M. Eckstein, PRB **103** 045133 (2021).

Review: YM, D Golež, M Eckstein, P Werner, arXiv:2310.05201

3) Quasi-equilibrium approach

Analogous to photo-doped semiconductor
 Mainly used in this talk

A. Rosch, et. al., PRL **101**, 265301 (2008). Y. Kanamori, et al., PRL 107, 167403 (2011). YM, et. al., Comm. Phys. 5, 23 (2022).

Quasi-equilibrium approach for photo-doped semiconductors ¹²

K. Asano, Bussei Kenkyu (2013). L. V. Keldysh, *Contemporary Phys.* **27**, 395 (1986).

Strongly correlated systems?

Quasi-equilibrium description for strongly correlated systems ¹³

Introducing chemical potential for local multiplets and effective temperature

$$\hat{K}_{\text{eff}} = \hat{H}_{\text{eff}} - \sum_{g \in \text{ps}} \mu_g \hat{n}_g \qquad \hat{\rho}_{\text{eff}} = \exp(-\beta_{\text{eff}} \hat{K}_{\text{eff}}) \qquad \text{GGE type description}$$

Solve the effective problem with existing **equilibrium** methods

Step3

Example : Extended Hubbard model

$$\begin{split} \hat{H} &= -v \sum_{\langle i,j \rangle,\sigma} \hat{c}_{i}^{\dagger} \hat{c}_{j} + \hat{H}_{U} + \hat{H}_{V} \quad \text{with} \\ \begin{aligned} \hat{H}_{U} &= U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \\ \hat{H}_{V} &= V \sum_{\langle ij \rangle} \hat{n}_{i} \hat{n}_{j} \end{aligned} \qquad U \gg v, V \\ \hat{H}_{V} &= V \sum_{\langle ij \rangle} \hat{n}_{i} \hat{n}_{j} \end{aligned} \qquad U \gg v, V \end{split}$$

$$\begin{split} \text{Effective model with conserved local multiplets and effects of virtual fluctuation} \\ \hat{H}_{\text{eff}} &= \hat{H}_{U} \qquad \leftarrow \mathcal{O}(U) \qquad 4 \text{ types of pseudo-particles} \\ &+ \hat{H}_{\text{kin,LHB}} + \hat{H}_{\text{kin,UHB}} \qquad \leftarrow \mathcal{O}(v) \qquad \mathcal{O}(J_{\text{ex}}) \ J_{\text{ex}} = \frac{4v^{2}}{U} \qquad \textbf{d} \qquad \textcircled{e} \qquad \textcircled{$$

Previous analysis : metastable η pairing phase

Cold atom with extreme doping

A. Rosch, et. al., PRL 101, 265301 (2008).

Metastable state with doublon or holon

Photo-doped metastable states in 1D?

Main points

- \triangleright Exact from of wave function of photo-doped states: $|\Psi\rangle = |\Psi_{\rm SF}^{\rm GS}\rangle |\Psi_{\rm spin}^{\rm GS}\rangle |\Psi_{\eta-{\rm spin}}^{\rm GS}\rangle$
- \triangleright Spin, charge and η -spin separation
- Intuitive insight into physics of metastable states

Emergent degrees of freedoms by photo-doping lead to intriguing nonequilibrium phases!

Exact wave function of photo-doped metastable states ¹⁷

YM, et al., PRL. 130, 106501 (2023).

Wave function @ $U \rightarrow \infty$, $V/J_{ex} = \text{const}$, $T_{eff} = 0$

$$\begin{split} |\Psi\rangle = |\Psi_{SF}^{GS}\rangle |\Psi_{spin}^{GS}\rangle |\Psi_{\eta-spin}^{GS}\rangle \\ \downarrow_{\gamma-spin}^{\text{Spinless fermion}} \\ \downarrow_{\gamma-spin}^{\text{Squeezed}} \\ H_{SF,free} \\ H_{spin}^{(SQ)} \\ H_{\eta-spin}^{(SQ)} \\ \downarrow_{\gamma-spin}^{(SQ)} \\ \downarrow_{\gamma-spin}^{$$

ho Extension of Ogata-Shiba state in equilibrium $|\Psi
angle=|\Psi^{
m GS}_{
m SF}
angle|\Psi^{
m GS}_{
m spin}
angle$

M. Ogata & H. Shiba, PRB 41 2326 (1990).

 \triangleright Spin, charge and η -spin separation

Useful insight into physics

Explanation of $|\Psi\rangle = |\Psi_{\rm SF}^{\rm GS}\rangle |\Psi_{\sigma}^{\rm GS}\rangle |\Psi_{\eta}^{\rm GS}\rangle$

YM, et al., PRL. 130, 106501 (2023). *L*: System size New expression of states: \hat{U} $N_{\rm s}$: Number of singly occupied sites N_{η} : Number of doublons and holons Spinless fermion Squeezed Squeezed (Position of Singlons) spin space η -spin space L sites L sites $N_{\rm s}$ sites N_n sites Hamiltonian for $J_{ex} = 0$ in the new expression 0 th order wave function $|\Psi_{\rm SF}^{\rm GS}\rangle|\Psi_{\sigma,\eta}\rangle$ $\hat{U}\hat{H}_{\rm kin}\hat{U}^{\dagger} = -t_{\rm hop}\sum_{i}(\hat{c}_{i}^{\dagger}\hat{c}_{j} + {\rm h.c.}) (\equiv \hat{H}_{\rm SF, free}) \quad \Box \searrow$ $\langle i,j \rangle$ i.e. Degeneracy of $2^{N_s} \cdot 2^{N_\eta}$

 $|\Psi_{\sigma,\eta}
angle$ is determined by degenerate perturbation theory

Explanation of $|\Psi\rangle = |\Psi_{\rm SF}^{\rm GS}\rangle|\Psi_{\sigma}^{\rm GS}\rangle|\Psi_{\eta}^{\rm GS}\rangle$

with

YM, et al., PRL. 130, 106501 (2023).

$\mathcal{O}(J_{ m ex})~~{ m terms}~{ m projected}~{ m to}~|\Psi_{ m SF}^{ m GS} angle|m{\sigma} angle$

$$\hat{H}_{\rm spin}^{\rm (SQ)} = J_{\rm ex}^{s} \sum_{i} \hat{\mathbf{s}}_{i+1} \cdot \hat{\mathbf{s}}_{i},$$
$$\hat{H}_{\eta-\rm spin}^{\rm (SQ)} = -J_{X}^{\eta} \sum_{j} (\hat{\eta}_{j+1}^{x} \hat{\eta}_{j}^{x} + \hat{\eta}_{j+1}^{y} \hat{\eta}_{j}^{y}) + J_{Z}^{\eta} \sum_{j} \hat{\eta}_{j+1}^{z} \hat{\eta}_{j}^{z},$$

 $\tilde{x} = n_s - \frac{\sin^2(\pi n_s)}{\pi^2 n_s}, \qquad \qquad \tilde{x}' = \frac{\sin(2\pi n_s)}{2\pi} - \frac{\sin^2(\pi n_s)}{\pi^2 n_s},$

 $\tilde{y} = n_{\eta} - \frac{\sin^2(\pi n_{\eta})}{\pi^2 n_n}, \qquad \qquad \tilde{y}' = \frac{\sin(2\pi n_{\eta})}{2\pi} - \frac{\sin^2(\pi n_{\eta})}{\pi^2 n_n}.$

3-site terms

$$J_{\text{ex}}^{\text{s}} = (\tilde{x} - \tilde{x}')J_{\text{ex}}$$
$$J_X^{\eta} = (\tilde{y} - \tilde{y}')J_{\text{ex}}$$
$$J_Z^{\eta} = -(\tilde{y} - \tilde{y}')J_{\text{ex}} + 4\tilde{y}V$$

 n_s : Density of singly occupied sites n_n : Density of doublons and holons

 \triangleright spin and η -spin are separated

Exchange couplings are renormalized

Summary

2-site terms

$$|\Psi\rangle = |\Psi_{\mathrm{SF}}^{\mathrm{GS}}\rangle |\Psi_{\mathrm{spin}}^{\mathrm{GS}}\rangle |\Psi_{\eta-\mathrm{spin}}^{\mathrm{GS}}\rangle$$

 $H_{\mathrm{SF,free}} = H_{\mathrm{spin}}^{\mathrm{(SQ)}} = H_{\eta-\mathrm{spin}}^{\mathrm{(SQ)}}$

Indication to nonequilibrium phases

YM, et al., PRL. **130**, 106501 (2023).

η-spin sectors

Described by the XXZ model

 \Rightarrow

Two types of phases

 $J_Z < J_X$: **Gapless** phase of the XXZ model

η-pairing state with slowly decaying

 $\chi_{\text{pair}}(r) \equiv \langle \hat{\eta}^x(r) \hat{\eta}^x(0) \rangle$

 \dot{X} Alternating sign in definition of $\hat{\eta}_i^+ = (-)^i \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{i\uparrow}^{\dagger}$

 $J_Z > J_X$: **Gapful** phase of the XXZ model

CDW state with slowly decaying

 $\chi_{\rm charge}(r) \equiv \langle \hat{\eta}^z(r) \hat{\eta}^z(0) \rangle$

% Long range order in the squeezed η spin space

String type order cf. Haldane phase

Phase diagram of the photo-doped states at $T_{eff} = 0$

- \triangleright 3 site terms favor η pairing phase
- \triangleright Analytic argument well explains numerically obtained phase diagram for H_{eff2} (no 3 site terms)
- ▷ Picture at U \rightarrow ∞ works well even for finite U

Insight into total central charge

Total central charge (\mathbf{c}) ~ Number of massless modes

$$|\Psi
angle = |\Psi_{\mathrm{SF}}^{\mathrm{GS}}
angle |\Psi_{\mathrm{spin}}^{\mathrm{GS}}
angle |\Psi_{\eta-\mathrm{spin}}^{\mathrm{GS}}
angle$$

 $H_{\mathrm{SF,free}} = H_{\mathrm{spin}}^{\mathrm{(SQ)}} = H_{\eta-\mathrm{spin}}^{\mathrm{(SQ)}}$

Charge (SF) sector: gapless

Total central charge: iTEBD analysis for H_{eff2}

c=3 in single-band Hubbard model is not expected in equilibrium

Emergence of extra degrees of freedom by photo-doping!

Naïve expectation of single-particle spectrum

$$A_k(\omega) = -\frac{1}{\pi} \text{Im} G_k^R(\omega) \text{ with } G_k(t,t') = -i \langle \mathcal{T} c_k(t) c_k^{\dagger}(t') \rangle$$

Equilibrium doped system

Electron = charge (SF) degree + spin degree

gapless gapless

Gapless around Fermi level

Photo-doped system

Electron = charge (SF) degree + spin degree + η spin degreegaplessgaplessgaplessgaplessCDW: gapful

η pairing phase : Gapless around Fermi level ?

CDW phase : Gapful around Fermi level ?

Single partici

ring state and CDW state ²⁵

Summary

Review on nonequilibrium Mott insulators: YM, D Golež, M Eckstein, P Werner, arXiv:2310.05201

Supplement

Previous analysis : metastable η pairing phase

Indication to spin properties

$$\begin{split} \Psi \rangle &= |\Psi_{\rm SF}^{\rm GS}\rangle |\Psi_{\rm spin}^{\rm GS}\rangle |\Psi_{\eta-{\rm spin}}^{\rm GS}\rangle \\ & \overline{H_{\rm SF,free}} \ \overline{H_{\rm spin}^{\rm (SQ)}} \ \overline{H_{\eta-{\rm spin}}^{\rm (SQ)}} \end{split}$$

SF and spin part is independent of the ratio between N_h and N_d .

➡ Chemical doping and photo-doping have the same effect on spin correlations

cf. DMFT results

J. Mentink & M. Eckstein PRL 113 057301 (2014).

Nonequilibrium phase diagram @ U = 10, $J_{ex} = 0.4$

Quasi-long range order

 $\chi(r) \propto \cos(qr)/r^a$ with $q = \pi (\eta$ -SC) $q = 2n_d \pi (\text{CDW})$ $q = (1 - 2n_d)\pi (\text{SDW})$

▷ Boundary of η SC and CDW = V=J_{ex}/2

Special kinematics of doublons and holons in one dimensional system

Long-life time of photo-carriers and their relaxation

Cooling of carriers in Photo-doped Mott

Cluster DMFT study

M. Eckstein & P. Werner Sci. Rep. 6 21235 (2015)

光誘起されたMott絶縁体の理論研究

NESS @ coupling with heat and particle bath

J. Li, et. al., PRB **102**, 165136 (2020).
J. Li and M. Eckstein, PRB **103** 045133 (2021).

- ▷ Transient state ≔ NESS
- ▷ NESS ← Effective temp + doping level description looks good

Analysis with infinite boundary condition

FIG. 5. Calculated single-particle excitation spectra of the 1DEHM at (a), (e), (i) $\Delta t_{\rm pr} = -\infty$ (GS); (b), (f), (j) $\Delta t_{\rm pr} = 0$; and (c), (g), (k) $\Delta t_{\rm pr} = 8$. (d), (h), (l) TDOSs at $\Delta t_{\rm pr} = -\infty$ (black solid line) and $\Delta t_{\rm pr} = 8$ (red dashed line). The on-site interaction is set to U = 10, and the intersite interaction, the pump-light frequency, and its intensity are set to (a)-(d) V = 0, $\omega_0 = 8.0$, and $A_0 = 0.6$; (e)-(h) V = 3, $\omega_0 = 6.04$, and $A_0 = 0.3$; and (i)-(l) V = 6, $\omega_0 = 6.34$, and $A_0 = 0.3$.

