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Simulating Many-Electron Systems

The Many-Electron Schrödinger Equation−
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Ψ = EΨ

The fundamental laws necessary for the

mathematical treatment of a large part of

physics and the whole of chemistry are thus

completely known, and the difficulty lies only in

the fact that application of these laws leads to

equations that are too complex to be solved.

P.A.M. Dirac, Proc. Roy. Soc. A, 123, 714 (1929)
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Density Functional Theory

Deal with the electrons one by one.

Effects of other electrons approximated by a mean field.

Ψ(r1, r2, . . . , rN) −→ Aφ1(r1)φ2(r2) . . . φN(rN)

There exists a mean field that yields exact ground-state

energies and densites.
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DFTworks remarkably well, but:

is not accurate enough for room-temperature chemistry;

cannot tell you about the correlations between electrons.

We are going to tackle the full many-electron problem

(. . . and prove Dirac wrong?)
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Neural Wave Functions

Artificial neural networks

are flexible and efficient function approximators in

high-dimensional spaces.

f(r1, . . . , rN) → Ψ
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A Simple Neural Network

x
`+1 = A(W`

x
` + b

`)

Learn network

parameters using

automatic

differentiation and

back propagation.



A Simple Neural Wave Function

x
`+1 = A(W`

x
` + b

`)

Learn wavefunction

parameters using

automatic

differentiation and

back propagation.



Variational Principle

Given an approximate ground-state wavefunctionΨθ(r1, . . . , rN), we
can improve it by minimizing

E(θ) =

∫
. . .

∫
Ψ∗

θ ĤΨθ dr1 . . .drN

QM comes with a built-in loss function.We can use it to learn

wavefunctions without recourse to external data.
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ĤΨθ(r1, . . . , rN)

Ψθ(r1, . . . , rN)

]

QM comes with a built-in loss function.We can use it to learn

wavefunctions without recourse to external data.



Neural Variational Monte Carlo

Estimate the energy expectation value and its gradients with

respect to the network parameters using Monte Carlo sampling.

Adapt the weights and biases of the neural network to lower the

energy.

No training dataset is required.We are “learning from equations.”
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The Pauli Principle

Many-electron wavefunctions must be totally antisymmetric:

Ψθ(r1, . . . , ri, . . . , rj, . . . , rN)

= −Ψθ(r1, . . . , rj, . . . , ri, . . . , rN)

for all electron labels i and j.



Hartree-Fock Theory

Ψ ≈

∣∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ1(r2) . . . ϕ1(rN)
ϕ2(r1) ϕ2(r2) . . . ϕ2(rN)
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ϕN(r1) ϕN(r2) . . . ϕN(rN)
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FermiNet

Nothing requires the orbitals to be functions of the coordinates of a

single electron:

Ψ ≈

∣∣∣∣∣∣∣∣∣∣
ϕ1(r1, {r/1}) ϕ1(r2, {r/2}) . . . ϕ1(rN, {r/N})
ϕ2(r1, {r/1}) ϕ2(r2, {r/2}) . . . ϕ2(rN, {r/N})

. . . . . .

. . . . . .
ϕN(r1, {r/1}) ϕN(r2, {r/2}) . . . ϕN(rN, {r/N})

∣∣∣∣∣∣∣∣∣∣

Ψ remains antisymmetric as long as ϕi(rj; {r/j}) is invariant
under any change in the order of the arguments after rj.

(A drastic generalisation of a backflowwavefunction)
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FermiNet and PsiFormer

FermiNet

D. Pfau, J.S. Spencer, A.G.D.G. Matthews, andW.M.C. Foulkes

Phys. Rev. Res. 2, 033429 (2020)

Psiformer

I. von Glehn, J.S. Spencer and D. Pfau

arXiv:2211.13672 (2022)

Recent Review

J. Hermann, J. Spencer, K. Choo, A. Mezzacapo,W.M.C. Foulkes,

D. Pfau, G. Carleo, and F. Noé

Nat. Rev. Chem. 7, 692 (2023)
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Atoms

16 FermiNet

determinants.

(conventional VMC &DMC

used 50–100 CSFs.)

FermiNet consistently

captures 99.7% of

correlation energy.

VMC, DMC:

P. Seth, P. López Ríos and R.J. Needs

J. Chem. Phys. 134, 084105 (2011)

Exact:

S.J. Chakravorty et al.

Phys. Rev. B 47, 3649 (1993)



Molecules



H10

Motta et al., PRX 031059 (2017)



Chemical Reactions

Bicyclobutane−→ Butadiene

bicbut

con_TS

dis_TS

g-but gt_TS t-but

Method con_TS dis_TS g-but gt_TS t-but

CCSD(T) 40.4 21.8 −25.1 −22.3 −28.0
CR-CC(2,3) 41.1 66.1 −24.9 −22.1 −27.9
CCSDt 40.1 59.0 −27.2 −25.3 −31.1
CC(t;3) 40.2 60.1 −25.3 −22.6 −28.3
DMC 40.4± 0.5 58.6± 0.5 −25.2± 0.5 −22.2± 0.5 −27.9± 0.5

FermiNet 40.2± 0.1 57.7± 0.1 −25.3± 0.1 −22.5± 0.1 −28.4± 0.1
Experiment 40.6± 2.5 - - - −25.9± 0.4

(Energies in kcal/mol relative to bicyclobutane)



Solids

Simulation cell with sides a1, a2, a3.

Any point in cell can be written

r = r1a2 + r2a2 + r3a3

Replace position inputs ri by explicitly periodic functions

sin(2πri) and cos(2πri).



LiH crystal

See also Li, Li and Chen, Nat. Commun. 13, 7895 (2022)
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Positrons

Nat. Commun. 15, 5214 (2024)



e+ binding energy (mHa)

Method LiH BeO

FermiNet 37.23 25.10
SJ-VMC 17.27 19
FN-DMC 37.1 28.0

CISD 17
MRD-CI 29.37 13.78

ECG-SVM 36.93
GW 39

e+ annihilation rate (ns−1)

Method PsH Mg LiH BeO Li2 Benzene

CI 2.0183 1.001 0.8947
FN-DMC 2.32 1.3602
ECG-SVG 2.4361 0.955 1.375

2.4722 1.0249
2.4685

GW 2.083 0.666
FermiNet 2.440 1.076 1.3391 0.9533 1.962 0.5247
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[BeO, e+]





Wigner Crystals

At very low densities, a uniform electron liquid freezes into a

Wigner crystal

Wigner crystallisation has not yet been observed in 3D, but

was recently imaged in 2D.

(ETH Zurich, July 2021)



Simulations

Continuum QMCmethods cannot easily find quantum phase

transitions; you usually have to guess them first.

FermiNet found the 3DWigner crystal spontaneously.
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Results

27 electrons in a body-centered cubic simulation cell.

Simulation cell is far too small to get the right transition

density. Formation of a 3× 3× 3Wigner crystal is strongly

favoured.

rs = 10 rs = 70

Phys. Rev. Lett. 130, 036401 (2023)

Comparing with conventional VMC and DMC simulations for

the same simulation cell is nevertheless valid.
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Relative Energies



Order Parameter



The Floating Crystal

TheWigner crystal was seen in the one-electron density. If we

omit the one-electron input features we see a true floating

crystal, but the energies are significantly higher.



Superfluidity

The Unitary Fermi Gas

Ĥ = −1

2

N∑
i=1

∇2
i +

N↑∑
i=1

N↓∑
j=1

U(r↑i − r
↓
j )

Attractive interaction U chosen such that s-wave scattering

length as diverges.

(Range of U)/as → 0.

Only remaining length scale is 1/kF.

M. Randeria and E. Tayor, Annu. Rev. Condens. Matter Phys. 5, 209 (2014)
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All thermodynamic quantities depend on kF only. For

example

E = ξEFG = ξ
3

5

h̄2k2F
2m

where ξ is a dimensionless constant known as the Bertsch

parameter.



Energy as a function of number of particles



Ideas for Improvement?

Use a bigger network or a linear combination of more terms?

Slightly increases maximum system size that works.

Costly.

Build a neural generalisation of the BCS (AGPs) wave

function:

Ψ2N = A
[
Φ(r↑1, r

↓
2)Φ(r

↑
3, r

↓
4) . . .Φ(r

↑
2N−1, r

↓
2N)
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Phys. Rev. X 14, 021030 (2024)
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Energies calculated using pairing wave function



Bertsch parameter

(comparison with fixed-node DMC)



Superconducting gap



Superfluid fraction
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Positives

Neural wave functions are way better than other

approximate wave functions for molecules with more than a

few atoms.

Rival and sometimes outperform the best quantum

chemical methods, many of which have been in

development for 50+ years.

Seem to be good at dealing with unusual systems

(positronic molecules; Wigner crystals) where conventional

methods need painful modification.

Might be able to deal with strong correlations.

Might be able to discover new phases.



Questions and Negatives

How general is the FermiNet wavefunction?

Does it work for non-Fermi liquids?

Size consistency and extensivity?

Optimization is slow and sometimes problematic.

Scaling.



Range of Ideas and Approaches

Systems Parameterisation Optimisation Accuracy

NNB: Luo, Clark,

PRL 122, 226401 (2019)
Hubbard backflow first order

beats conventional

backflow

PauliNet: Hermann et al.,

Nature Chemistry 12, 891 (2020)

molecules

continuum
Jastrow + backflow ADAM

Boron: 97.3% c.e.

H10 : 90–97% c.e.

NQS: Choo et al.,

Nature Commun. 11, 2360 (2020)

molecules

basis

map to spin system;

approximate as RBM

stochastic

reconfig.

< 1mH relative to

FCI in STO-3G

FermiNet: Pfau et al.,

Phys. Rev. Res. 2, 033429 (2020)

molecules

continuum
everything KFAC

Boron: 99.8% c.e.

H10 : 98.5–99.3% c.e.

FermiNet+DMC: Wilson et al.,

arXiv:2103.12570 (2021)

molecules

continuum
everything KFAC

consistent with our

FermiNet+DMC

Weight Sharing: Scherbela et al.,

arXiv:2105.08351 (2021)

multiple

geometries
Jastrow + backflow ADAM similar to PauliNet



Typical Network Configuration

16 FermiNet determinants

256 hidden units for the one-electron stream

32 hidden units for the two-electron stream

Approximately 700,000 parameters

Batch size 4096

Training iterations 2× 105

Steps between parameter updates 10



Scaling
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